Simple linear regression models how a response \(Y\) changes with a predictor \(X\).
Examples: - Cars: MPG vs weight (mtcars dataset in R) - Finance: stock return vs market return (simulated CAPM-style data)
Simple linear regression models how a response \(Y\) changes with a predictor \(X\).
Examples: - Cars: MPG vs weight (mtcars dataset in R) - Finance: stock return vs market return (simulated CAPM-style data)
\[ Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \]
Assumptions (common): \[ E(\varepsilon_i)=0, \qquad Var(\varepsilon_i)=\sigma^2 \] —
#Car example: Mpg vs weight fit_cars <- lm(mpg ~ wt, data = mtcars) summary(fit_cars)
## ## Call: ## lm(formula = mpg ~ wt, data = mtcars) ## ## Residuals: ## Min 1Q Median 3Q Max ## -4.5432 -2.3647 -0.1252 1.4096 6.8727 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 37.2851 1.8776 19.858 < 2e-16 *** ## wt -5.3445 0.5591 -9.559 1.29e-10 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 3.046 on 30 degrees of freedom ## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446 ## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
#Finance example: simulated returns set.seed(42) market <- rnorm(120, 0.0005, 0.01) stock <- 0.0002 + 1.2*market + rnorm(120, 0, 0.012) fit_fin <- lm(stock ~ market) summary(fit_fin)
## ## Call: ## lm(formula = stock ~ market) ## ## Residuals: ## Min 1Q Median 3Q Max ## -0.0231907 -0.0076228 -0.0005725 0.0067849 0.0257825 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -0.0009691 0.0009734 -0.996 0.322 ## market 1.0574839 0.0940264 11.247 <2e-16 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.01063 on 118 degrees of freedom ## Multiple R-squared: 0.5174, Adjusted R-squared: 0.5133 ## F-statistic: 126.5 on 1 and 118 DF, p-value: < 2.2e-16
Let: - \(X\) = market daily return
- \(Y\) = stock daily return
Interpretation: - \(\beta_1\) = “beta” (market sensitivity) - \(\beta_0\) = “alpha” (return not explained by market)
OLS minimizes:
\[ S(\beta_0,\beta_1)=\sum_{i=1}^{n}\left(Y_i-(\beta_0+\beta_1X_i)\right)^2 \]
Test:
\[ H_0:\beta_1 = 0 \quad \text{vs} \quad H_a:\beta_1 \neq 0 \]
Statistic: \[ t = \frac{\hat{\beta}_1}{SE(\hat{\beta}_1)} \]