Gap Years in Australia: Effects on Multidimensional Life Satisfaction

Link to questions for Felix

SQL Data Munging

Initial data-munging was done using a series of SQL queries. For direct further education entrants we took those who indicated that they had finished year 12 the year before and indicated that they were currently undertaking some form of teriary study. Gap year students were derived by taking those who had completed year 12 the year before and indicated that they had defered further education and/or confirmed the following year that they had defered further education in the year previous.

Further education drop-outs were taking by exploring if in any of the years under investigation they indicated they had withdrawn from their teriary education course. Gap-year returners composed those who had, at any time during the period of investigation indicated that they currently undertaking teriary education. SQL queries underlying theis subsetting are in .Rmd file associated with this file.

## Loading required package: DBI
## [1] "META1995"    "META1998"    "META2003"    "Student1995" "Student1998"
## [6] "Student2003"

The number of adolescence who directly entered university after high-school was 2259. The number of adolescents that took a gap-year (offered further education but defered) was 645. Of the direct entrants, those who withdraw from further education in the direct entrant group were 81. For ther gap-year group, those who eventually returned to further education were 461.

Cohort Sequence Design

The PISA database consistst on individuals who are the same age but may be in a veriety of year in school grades. In the current research we wanted to compare individuals in terms of years since high-school graduation rather than age in years. As such, we needed to rearrange the data.

Plot Growth

The plots show relatively consistent quadratic growth suggesting an increase in satisfaction with career and future prospects before returning to high-school levels. The dramatic spike in satisfaction in the 'gap-year' group reflects large amounts of missing data in this group in the final waves. With Bayes imputation this mean returns to the trend present in both groups. plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3

Hierachical Bayes

Growth curve models were fitted via hierachical bayes models to account for missing data and provide appropriate estiamtes of uncertainty. Before fitting these models, however, we fitted standard glmm linear and quadratic models in the R package lme4. This was done to choose the appropriate model to fit in JAGS. Most models appeared to display quadratic growth, fitted via the following using the following script.

Hierachical Bayes Model - JAGS script

model{
  # Model
  for (i in 1:n) {
    mu[i] <- alpha[id[i]] + beta[id[i]] * wave[i] + beta2 * group[i] + 
            beta3 * wave[i] * group[i] + beta.quad * wave[i] *wave[i];
    Y[i]   ~ dnorm(mu[i], tau.c)
  }

  for (j in 1:n.id) {    
    alpha[j] ~ dnorm(alpha.mu, alpha.tau);
    beta[j] ~ dnorm(beta.mu, beta.tau);
  }

  # Priors
  alpha.mu  ~ dnorm(0, 1.0E-4);
  beta.mu   ~ dnorm(0, 1.0E-4);
  tau.c     ~ dgamma(1.0E-3, 1.0E-3);
  alpha.tau ~ dgamma(1.0E-3, 1.0E-3);
  beta.tau ~ dgamma(1.0E-3, 1.0E-3);
  beta2  ~ dnorm(0, 1.0E-4);
  beta3  ~ dnorm(0, 1.0E-4);
  beta.quad  ~ dnorm(0, 1.0E-4);

  alpha.sigma  <- 1.0/sqrt(alpha.tau);
  beta.sigma  <- 1.0/sqrt(beta.tau);
}

GLMM and Hierachical Bayes models were then run. I do have questions here though:

  1. Is it worth making polynomial growth random as well?
  2. I can fit a polynomial of degree 3 to the data and it is significantly better fitting but maybe overfitting?
  3. Should I include intereactions betwen group(defer/direct university entry) and growth for all degree's or is the linear growth enough?
## Linear mixed model fit by REML ['lmerMod']
## Formula: CAREER.PROS ~ wave + group + wave:group + (wave | id) 
##    Data: careerPros 
## 
## REML criterion at convergence: 20886 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  id       (Intercept) 0.12411  0.3523        
##           wave        0.00636  0.0797   -0.29
##  Residual             0.21419  0.4628        
## Number of obs: 12884, groups: id, 2883
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  3.39699    0.01145   296.7
## wave        -0.01147    0.00403    -2.8
## group        0.00306    0.01145     0.3
## wave:group  -0.00120    0.00403    -0.3
## 
## Correlation of Fixed Effects:
##            (Intr) wave   group 
## wave       -0.581              
## group       0.565 -0.336       
## wave:group -0.336  0.592 -0.581
## Linear mixed model fit by REML ['lmerMod']
## Formula: CAREER.PROS ~ wave + group + I(wave^2) + wave:group + I(wave^2):group +      (wave | id) 
##    Data: careerPros 
## 
## REML criterion at convergence: 20859 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  id       (Intercept) 0.12503  0.354         
##           wave        0.00656  0.081    -0.30
##  Residual             0.21279  0.461         
## Number of obs: 12884, groups: id, 2883
## 
## Fixed effects:
##                  Estimate Std. Error t value
## (Intercept)      3.365820   0.012574   267.7
## wave             0.051468   0.011424     4.5
## group            0.000293   0.012574     0.0
## I(wave^2)       -0.015303   0.002628    -5.8
## wave:group       0.006906   0.011424     0.6
## group:I(wave^2) -0.002326   0.002628    -0.9
## 
## Correlation of Fixed Effects:
##             (Intr) wave   group  I(w^2) wv:grp
## wave        -0.573                            
## group        0.562 -0.331                     
## I(wave^2)    0.412 -0.935  0.244              
## wave:group  -0.331  0.602 -0.573 -0.578       
## grp:I(wv^2)  0.244 -0.578  0.412  0.632 -0.935
## Data: careerPros
## Models:
## M_linear: CAREER.PROS ~ wave + group + wave:group + (wave | id)
## M_quad: CAREER.PROS ~ wave + group + I(wave^2) + wave:group + I(wave^2):group + 
## M_quad:     (wave | id)
##          Df   AIC   BIC logLik deviance Chisq Chi Df Pr(>Chisq)    
## M_linear  8 20867 20927 -10426    20851                            
## M_quad   10 20825 20899 -10402    20805  46.7      2    7.1e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Inference for Bugs model at "/Users/phparker/Dropbox/Projects_Research/LSAY_GapYear//QuadraticGrowth_ByGroup.txt", fit using jags,
##  4 chains, each with 15000 iterations (first 1000 discarded), n.thin = 10
##  n.sims = 5600 iterations saved
##               mu.vect  sd.vect      2.5%       25%       50%       75%     97.5%  Rhat n.eff
## alpha.mu        3.044 9.39e-01     0.037     3.371     3.381     3.389     3.403 1.014   310
## alpha.sigma     0.300 1.02e-01     0.013     0.331     0.337     0.342     0.351 1.026   200
## beta.mu        -0.030 2.20e-02    -0.051    -0.042    -0.037    -0.031     0.041 1.083    96
## beta.quad       0.038 1.45e-01    -0.020    -0.016    -0.014    -0.012     0.495 1.016   280
## beta.sigma      0.055 1.70e-02     0.013     0.055     0.061     0.065     0.071 1.003  1300
## beta2          -0.194 5.40e-01    -1.915    -0.011    -0.002     0.007     0.021 1.014   310
## beta3          -0.005 1.20e-02    -0.024    -0.011    -0.006    -0.001     0.025 1.039   150
## beta4           0.027 7.90e-02    -0.007    -0.003    -0.001     0.001     0.274 1.017   270
## deviance    21003.544 1.10e+04 16736.368 16908.711 17007.291 17134.976 54746.529 1.019   250
## 
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
## 
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 59865655.1 and DIC = 59886658.6
## DIC is an estimate of expected predictive error (lower deviance is better).

plot of chunk unnamed-chunk-4

## Linear mixed model fit by REML ['lmerMod']
## Formula: FUTURE.PROS ~ wave + group + wave:group + (wave | id) 
##    Data: futPros 
## 
## REML criterion at convergence: 18131 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  id       (Intercept) 0.10635  0.3261        
##           wave        0.00243  0.0493   -0.23
##  Residual             0.17588  0.4194        
## Number of obs: 12890, groups: id, 2882
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept)  3.421000   0.010468     327
## wave         0.000731   0.003398       0
## group        0.010825   0.010468       1
## wave:group  -0.002889   0.003398      -1
## 
## Correlation of Fixed Effects:
##            (Intr) wave   group 
## wave       -0.569              
## group       0.564 -0.330       
## wave:group -0.330  0.595 -0.569
## Linear mixed model fit by REML ['lmerMod']
## Formula: FUTURE.PROS ~ wave + group + I(wave^2) + wave:group + I(wave^2):group +      (wave | id) 
##    Data: futPros 
## 
## REML criterion at convergence: 18135 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  id       (Intercept) 0.1068   0.327         
##           wave        0.0025   0.050    -0.24
##  Residual             0.1755   0.419         
## Number of obs: 12890, groups: id, 2882
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)      3.40820    0.01149   296.6
## wave             0.02590    0.01023     2.5
## group            0.01580    0.01149     1.4
## I(wave^2)       -0.00600    0.00235    -2.6
## wave:group      -0.01181    0.01023    -1.2
## group:I(wave^2)  0.00200    0.00235     0.8
## 
## Correlation of Fixed Effects:
##             (Intr) wave   group  I(w^2) wv:grp
## wave        -0.560                            
## group        0.562 -0.324                     
## I(wave^2)    0.411 -0.943  0.243              
## wave:group  -0.324  0.602 -0.560 -0.582       
## grp:I(wv^2)  0.243 -0.582  0.411  0.632 -0.943
## Data: futPros
## Models:
## M_linear: FUTURE.PROS ~ wave + group + wave:group + (wave | id)
## M_quad: FUTURE.PROS ~ wave + group + I(wave^2) + wave:group + I(wave^2):group + 
## M_quad:     (wave | id)
##          Df   AIC   BIC logLik deviance Chisq Chi Df Pr(>Chisq)    
## M_linear  8 18112 18171  -9048    18096                            
## M_quad   10 18099 18174  -9039    18079  16.6      2    0.00025 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Inference for Bugs model at "/Users/phparker/Dropbox/Projects_Research/LSAY_GapYear//QuadraticGrowth_ByGroup.txt", fit using jags,
##  4 chains, each with 15000 iterations (first 1000 discarded), n.thin = 10
##  n.sims = 5600 iterations saved
##               mu.vect   sd.vect      2.5%       25%       50%       75%     97.5%  Rhat n.eff
## alpha.mu        3.072     0.971     0.051     3.421     3.430     3.438     3.451 1.003  1200
## alpha.sigma     0.278     0.096     0.015     0.309     0.314     0.319     0.327 1.007   630
## beta.mu        -0.004     0.017    -0.020    -0.012    -0.008    -0.003     0.052 1.105    80
## beta.quad       0.049     0.147    -0.010    -0.007    -0.005    -0.003     0.498 1.004   920
## beta.sigma      0.037     0.010     0.012     0.034     0.040     0.044     0.051 1.006   540
## beta2          -0.208     0.556    -1.934    -0.012    -0.003     0.004     0.017 1.003  1200
## beta3           0.000     0.013    -0.037    -0.004     0.001     0.005     0.028 1.020   230
## beta4           0.032     0.080    -0.002     0.001     0.003     0.005     0.274 1.004   880
## deviance    18839.970 12122.839 14048.083 14219.937 14310.634 14432.482 54848.083 1.005   730
## 
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
## 
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 73279322.2 and DIC = 73298162.2
## DIC is an estimate of expected predictive error (lower deviance is better).

plot of chunk unnamed-chunk-4

## Linear mixed model fit by REML ['lmerMod']
## Formula: LIFE.SAT ~ wave + group + wave:group + (wave | id) 
##    Data: lifeSat 
## 
## REML criterion at convergence: 17944 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  id       (Intercept) 0.10782  0.3284        
##           wave        0.00226  0.0476   -0.11
##  Residual             0.14805  0.3848        
## Number of obs: 14154, groups: id, 2883
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  3.56615    0.00873     409
## wave        -0.01603    0.00237      -7
## group        0.01825    0.00873       2
## wave:group  -0.00242    0.00237      -1
## 
## Correlation of Fixed Effects:
##            (Intr) wave   group 
## wave       -0.289              
## group       0.421  0.039       
## wave:group  0.039  0.286 -0.289
## Linear mixed model fit by REML ['lmerMod']
## Formula: LIFE.SAT ~ wave + group + I(wave^2) + wave:group + I(wave^2):group +      (wave | id) 
##    Data: lifeSat 
## 
## REML criterion at convergence: 17929 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  id       (Intercept) 0.10826  0.3290        
##           wave        0.00234  0.0484   -0.12
##  Residual             0.14738  0.3839        
## Number of obs: 14154, groups: id, 2883
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)      3.56068    0.00929     383
## wave             0.01031    0.00492       2
## group            0.03560    0.00929       4
## I(wave^2)       -0.00732    0.00127      -6
## wave:group      -0.02011    0.00492      -4
## group:I(wave^2)  0.00304    0.00127       2
## 
## Correlation of Fixed Effects:
##             (Intr) wave   group  I(w^2) wv:grp
## wave        -0.216                            
## group        0.392  0.284                     
## I(wave^2)   -0.016 -0.828 -0.337              
## wave:group   0.284 -0.447 -0.216  0.343       
## grp:I(wv^2) -0.337  0.343 -0.016 -0.070 -0.828
## Data: lifeSat
## Models:
## M_linear: LIFE.SAT ~ wave + group + wave:group + (wave | id)
## M_quad: LIFE.SAT ~ wave + group + I(wave^2) + wave:group + I(wave^2):group + 
## M_quad:     (wave | id)
##          Df   AIC   BIC logLik deviance Chisq Chi Df Pr(>Chisq)    
## M_linear  8 17923 17984  -8954    17907                            
## M_quad   10 17890 17965  -8935    17870  37.3      2    7.8e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Inference for Bugs model at "/Users/phparker/Dropbox/Projects_Research/LSAY_GapYear//QuadraticGrowth_ByGroup.txt", fit using jags,
##  4 chains, each with 15000 iterations (first 1000 discarded), n.thin = 10
##  n.sims = 5600 iterations saved
##               mu.vect  sd.vect      2.5%       25%       50%       75%     97.5%  Rhat n.eff
## alpha.mu        3.199 9.63e-01     0.040     3.525     3.533     3.539     3.552 1.012   380
## alpha.sigma     0.294 9.60e-02     0.013     0.322     0.328     0.332     0.340 1.021   260
## beta.mu        -0.030 1.10e-02    -0.044    -0.032    -0.029    -0.026    -0.006 1.178    80
## beta.quad       0.027 9.90e-02    -0.010    -0.008    -0.007    -0.006     0.353 1.010   440
## beta.sigma      0.038 9.00e-03     0.013     0.037     0.040     0.043     0.048 1.001  5400
## beta2          -0.133 3.93e-01    -1.411    -0.006     0.002     0.009     0.021 1.012   380
## beta3          -0.025 6.30e-02    -0.224    -0.007    -0.004    -0.001     0.004 1.020   270
## beta4          -0.005 2.40e-02    -0.083     0.002     0.003     0.004     0.006 1.015   330
## deviance    18337.036 1.45e+04 12985.293 13158.038 13247.878 13362.111 63412.247 1.017   290
## 
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
## 
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 104176064.9 and DIC = 104194401.9
## DIC is an estimate of expected predictive error (lower deviance is better).

plot of chunk unnamed-chunk-4

Study 2 - Time Varying Covariates

Time Varying Covariate Models

For Direct University Entrant Students, Status equals:

  1. 1=Completed
  2. 3=Dropped Out
  3. 3=Defered
  4. 4=Changed course of Study
  5. 5=Still Studying/Attrition (need to fix)
## $`3`
## 
##    1    5 
## 2180   68 
## 
## $`4`
## 
##    1    2    3    4    5 
## 1900    3    1    1  171 
## 
## $`5`
## 
##    1    2    3    4    5 
## 1648   80    9    3  226 
## 
## $`6`
## 
##    1    2    3    4    5 
## 1078  409  112   34  191 
## 
## $`7`
## 
##   1   2   3   4   5 
## 502 750 200  70 166 
## 
## $`8`
## 
##   1   2   3   4   5 
##  88 239  41  16  45 
## 
## $`9`
## 
## 1 2 5 
## 2 8 1
## Linear mixed model fit by REML ['lmerMod']
## Formula: LIFE.SAT ~ wave + as.factor(STATUS) + I(wave^2) + (wave | id) 
##    Data: UlifeSat 
## 
## REML criterion at convergence: 12959 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  id       (Intercept) 0.15672  0.3959        
##           wave        0.00239  0.0489   -0.52
##  Residual             0.14420  0.3797        
## Number of obs: 10227, groups: id, 2248
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)         3.34444    0.04716    70.9
## wave                0.08999    0.01948     4.6
## as.factor(STATUS)2 -0.00278    0.01584    -0.2
## as.factor(STATUS)3 -0.03064    0.02604    -1.2
## as.factor(STATUS)4 -0.04071    0.04351    -0.9
## as.factor(STATUS)5  0.00296    0.01945     0.2
## I(wave^2)          -0.00996    0.00193    -5.2
## 
## Correlation of Fixed Effects:
##             (Intr) wave   a.(STATUS)2 a.(STATUS)3 a.(STATUS)4 a.(STATUS)5
## wave        -0.972                                                       
## a.(STATUS)2 -0.120  0.184                                                
## a.(STATUS)3 -0.056  0.095  0.296                                         
## a.(STATUS)4 -0.043  0.066  0.142       0.087                             
## a.(STATUS)5  0.075 -0.088  0.111       0.069       0.057                 
## I(wave^2)    0.929 -0.983 -0.286      -0.159      -0.103       0.058
## Linear mixed model fit by REML ['lmerMod']
## Formula: CAREER.PROS ~ wave + as.factor(STATUS) + I(wave^2) + (wave |      id) 
##    Data: UcarrerPros 
## 
## REML criterion at convergence: 16533 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  id       (Intercept) 0.24502  0.4950        
##           wave        0.00649  0.0805   -0.72
##  Residual             0.21475  0.4634        
## Number of obs: 10158, groups: id, 2248
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)         3.10110    0.05810    53.4
## wave                0.12922    0.02404     5.4
## as.factor(STATUS)2 -0.01786    0.01958    -0.9
## as.factor(STATUS)3  0.04541    0.03231     1.4
## as.factor(STATUS)4 -0.09334    0.05460    -1.7
## as.factor(STATUS)5 -0.09982    0.02334    -4.3
## I(wave^2)          -0.01332    0.00239    -5.6
## 
## Correlation of Fixed Effects:
##             (Intr) wave   a.(STATUS)2 a.(STATUS)3 a.(STATUS)4 a.(STATUS)5
## wave        -0.975                                                       
## a.(STATUS)2 -0.125  0.189                                                
## a.(STATUS)3 -0.059  0.098  0.295                                         
## a.(STATUS)4 -0.044  0.067  0.138       0.084                             
## a.(STATUS)5  0.069 -0.081  0.115       0.072       0.057                 
## I(wave^2)    0.928 -0.982 -0.292      -0.162      -0.104       0.050
## Linear mixed model fit by REML ['lmerMod']
## Formula: FUTURE.PROS ~ wave + as.factor(STATUS) + I(wave^2) + (wave |      id) 
##    Data: UfutPros 
## 
## REML criterion at convergence: 14284 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  id       (Intercept) 0.14390  0.3793        
##           wave        0.00223  0.0472   -0.54
##  Residual             0.17561  0.4191        
## Number of obs: 10156, groups: id, 2247
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)         3.20696    0.05180    61.9
## wave                0.08506    0.02142     4.0
## as.factor(STATUS)2 -0.01149    0.01718    -0.7
## as.factor(STATUS)3 -0.01896    0.02827    -0.7
## as.factor(STATUS)4 -0.05975    0.04710    -1.3
## as.factor(STATUS)5 -0.03341    0.02072    -1.6
## I(wave^2)          -0.00765    0.00212    -3.6
## 
## Correlation of Fixed Effects:
##             (Intr) wave   a.(STATUS)2 a.(STATUS)3 a.(STATUS)4 a.(STATUS)5
## wave        -0.975                                                       
## a.(STATUS)2 -0.114  0.176                                                
## a.(STATUS)3 -0.052  0.089  0.292                                         
## a.(STATUS)4 -0.040  0.063  0.146       0.089                             
## a.(STATUS)5  0.072 -0.083  0.124       0.077       0.060                 
## I(wave^2)    0.933 -0.984 -0.278      -0.152      -0.100       0.052

For gap-year, special equals:

  1. 0=Never Recommenced Study
  2. 1=Commenced Study
## $`1`
## 
##   0   1 
##  87 454 
## 
## $`2`
## 
##   0   1 
##  87 454 
## 
## $`3`
## 
##   0   1 
##  87 454 
## 
## $`4`
## 
##   0   1 
##  87 454 
## 
## $`5`
## 
##   0   1 
##  87 454 
## 
## $`6`
## 
##   0   1 
##  87 454 
## 
## $`7`
## 
##   0   1 
##  87 454 
## 
## $`8`
## 
##   0   1 
##  87 454 
## 
## $`9`
## 
##   0   1 
##  87 454
## Linear mixed model fit by REML ['lmerMod']
## Formula: LIFE.SAT ~ wave + as.factor(special) + I(wave^2) + (wave | id) 
##    Data: DlifeSat 
## 
## REML criterion at convergence: 4540 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  id       (Intercept) 0.11588  0.3404        
##           wave        0.00237  0.0487   -0.50
##  Residual             0.15647  0.3956        
## Number of obs: 3571, groups: id, 541
## 
## Fixed effects:
##                     Estimate Std. Error t value
## (Intercept)          3.54131    0.04527    78.2
## wave                 0.01567    0.01552     1.0
## as.factor(special)1  0.05981    0.03889     1.5
## I(wave^2)           -0.00441    0.00185    -2.4
## 
## Correlation of Fixed Effects:
##             (Intr) wave   as.()1
## wave        -0.585              
## as.fctr(s)1 -0.720 -0.001       
## I(wave^2)    0.512 -0.966  0.003
## Linear mixed model fit by REML ['lmerMod']
## Formula: CAREER.PROS ~ wave + as.factor(special) + I(wave^2) + (wave |      id) 
##    Data: DcarrerPros 
## 
## REML criterion at convergence: 3992 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  id       (Intercept) 0.20178  0.4492        
##           wave        0.00665  0.0815   -0.71
##  Residual             0.20255  0.4501        
## Number of obs: 2545, groups: id, 541
## 
## Fixed effects:
##                     Estimate Std. Error t value
## (Intercept)          2.95135    0.12374   23.85
## wave                 0.15484    0.04865    3.18
## as.factor(special)1  0.13180    0.04508    2.92
## I(wave^2)           -0.01685    0.00477   -3.53
## 
## Correlation of Fixed Effects:
##             (Intr) wave   as.()1
## wave        -0.933              
## as.fctr(s)1 -0.311  0.006       
## I(wave^2)    0.901 -0.989 -0.004
## Linear mixed model fit by REML ['lmerMod']
## Formula: FUTURE.PROS ~ wave + as.factor(special) + I(wave^2) + (wave |      id) 
##    Data: DfutPros 
## 
## REML criterion at convergence: 3587 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  id       (Intercept) 0.16026  0.4003        
##           wave        0.00297  0.0545   -0.67
##  Residual             0.17764  0.4215        
## Number of obs: 2553, groups: id, 541
## 
## Fixed effects:
##                     Estimate Std. Error t value
## (Intercept)          3.32741    0.11456   29.04
## wave                 0.02401    0.04496    0.53
## as.factor(special)1  0.07038    0.04146    1.70
## I(wave^2)           -0.00281    0.00440   -0.64
## 
## Correlation of Fixed Effects:
##             (Intr) wave   as.()1
## wave        -0.932              
## as.fctr(s)1 -0.309  0.005       
## I(wave^2)    0.903 -0.990 -0.004