1 Introdução

Este relatório apresenta uma análise quantitativa de carteiras baseada na Teoria Moderna de Portfólios de Markowitz, utilizando dados diários do Yahoo Finance no período de 2021 a 2025.

Objetivos do Presente Relatorio:

  • Coletar preços históricos

  • Calcular retornos logarítmicos

  • Avaliar risco, retorno e correlações

  • Estimar Betas (CAPM)

  • Simular carteiras de 3 ativos

  • Determinar fronteira eficiente

  • Identificar a melhor relação risco/retorno

2 Carregamento das Bibliotecas de Pacote

pkgs <- c("quantmod","tidyverse","PerformanceAnalytics",
          "plotly","moments","PortfolioAnalytics",
          "combinat","GGally","kableExtra")

lapply(pkgs, require, character.only = TRUE)

require(quantmod)
library(PerformanceAnalytics)
library(PortfolioAnalytics)
library(knitr)
library(xts)
library(tidyverse)

3 Tickers das Empresas Análisadas

start_date <- "2021-01-01"
end_date   <- "2025-12-31"

tickers_acoes <- c(
  "PETR4.SA","VALE3.SA","WEGE3.SA","AMER3.SA","BBAS3.SA","ITUB4.SA",
  "SUZB3.SA","KLBN11.SA","ALPA4.SA","EQTL3.SA","PRIO3.SA","BBDC4.SA",
  "PSSA3.SA","MGLU3.SA","GOAU4.SA","JBSS32.SA","GMAT3.SA","BNBR3.SA",
  "MELI34.SA","GUAR3.SA"
)



# baixar ações
getSymbols(tickers_acoes, src="yahoo", from=start_date, to=end_date)

# baixar IBOV separado
getSymbols("^BVSP", src="yahoo", from=start_date, to=end_date)

4 Coleta de Dados na Base de Dados do Yahoo Finance

# baixar ações
getSymbols(tickers_acoes, src="yahoo", from=start_date, to=end_date)
##  [1] "PETR4.SA"  "VALE3.SA"  "WEGE3.SA"  "AMER3.SA"  "BBAS3.SA"  "ITUB4.SA" 
##  [7] "SUZB3.SA"  "KLBN11.SA" "ALPA4.SA"  "EQTL3.SA"  "PRIO3.SA"  "BBDC4.SA" 
## [13] "PSSA3.SA"  "MGLU3.SA"  "GOAU4.SA"  "JBSS32.SA" "GMAT3.SA"  "BNBR3.SA" 
## [19] "MELI34.SA" "GUAR3.SA"
# baixar IBOV separado
getSymbols("^BVSP", src="yahoo", from=start_date, to=end_date)
## [1] "BVSP"
get_adj <- function(x) Ad(get(x))

prices_acoes <- do.call(merge, lapply(tickers_acoes, get_adj))

ibov <- Ad(BVSP)
colnames(ibov) <- "IBOV"


prices <- merge(prices_acoes, ibov)
prices <- na.omit(prices)

kable(prices, caption = "Empresas da Amostra Financeira")
Empresas da Amostra Financeira
PETR4.SA.Adjusted VALE3.SA.Adjusted WEGE3.SA.Adjusted AMER3.SA.Adjusted BBAS3.SA.Adjusted ITUB4.SA.Adjusted SUZB3.SA.Adjusted KLBN11.SA.Adjusted ALPA4.SA.Adjusted EQTL3.SA.Adjusted PRIO3.SA.Adjusted BBDC4.SA.Adjusted PSSA3.SA.Adjusted MGLU3.SA.Adjusted GOAU4.SA.Adjusted JBSS32.SA.Adjusted GMAT3.SA.Adjusted BNBR3.SA.Adjusted MELI34.SA.Adjusted GUAR3.SA.Adjusted IBOV
28.49225 49.25279 40.42318 5.66 21.42678 32.62405 52.15984 17.04288 7.789287 34.91918 42.57 14.84493 50.68995 9.047619 7.081171 76.30 7.618500 91.95474 110.80 5.855272 136436
29.44042 48.82131 40.41363 5.42 21.28752 32.92310 51.85641 16.69431 7.729238 34.90959 43.31 15.30444 50.85478 9.085714 6.803478 76.65 7.676805 91.95474 109.96 5.840833 137128
30.10413 48.50000 40.38496 5.42 21.30741 33.17684 51.82705 16.85025 7.746394 35.03426 43.22 15.45448 51.76619 9.161904 6.759632 76.10 7.725391 91.95474 109.23 5.876932 137800
30.84369 47.85737 40.50919 5.34 21.47652 32.77811 52.96245 16.86860 7.849336 34.90959 43.98 15.27631 51.37836 8.514285 6.715786 76.68 7.560195 92.68446 109.30 5.783074 137213
30.54028 49.41804 40.65254 5.44 21.86447 33.37621 53.09948 16.98784 7.892229 35.40829 43.18 15.60453 52.05707 9.085714 6.766939 78.15 7.696239 92.43150 111.95 5.920250 139256
31.23244 47.19638 39.57267 5.70 21.78489 33.57558 51.52362 16.51086 7.815022 35.13976 44.03 15.83897 52.27037 8.885714 6.715786 76.00 7.773979 91.94501 109.99 5.898591 138840
31.20400 47.04032 40.00270 5.85 21.69536 33.37621 51.69002 16.54755 7.857914 35.06304 43.70 15.71706 52.00859 8.904761 6.701169 74.85 7.725391 92.43150 110.00 5.934690 138717
31.11866 45.82850 39.79247 5.83 21.23778 33.20403 50.76995 16.14395 7.772130 34.45883 43.56 15.58577 51.87284 8.428571 6.511170 75.18 7.511608 87.56668 109.73 5.790294 137116
30.34117 46.40687 39.84424 6.65 20.97915 33.13154 50.65250 16.19899 7.883650 34.14234 43.25 15.46386 51.79528 8.485714 6.540400 73.06 7.511608 87.56668 112.81 5.840833 136551
29.74383 46.39769 39.69099 6.06 21.32730 33.75682 50.75038 16.24485 7.952279 34.52596 41.56 15.51075 52.34794 8.666666 6.525785 75.00 7.705957 87.56668 116.30 6.035767 137165
29.59212 46.34261 40.05495 5.90 21.14825 33.14965 50.39801 16.14395 7.875072 33.74913 41.03 15.37946 52.26068 8.695238 6.401554 75.92 7.637935 87.56668 117.79 6.028548 135767
29.82916 47.73803 41.25220 5.86 21.48647 32.90498 50.51547 16.40996 8.055222 34.02726 41.85 15.52013 52.87151 8.971428 6.518477 80.11 7.783697 87.56668 117.25 6.064647 137114
29.59212 48.53672 40.56258 5.93 21.61578 32.86873 50.06522 16.40996 7.917964 33.83545 41.87 15.53888 53.00183 8.857142 6.445400 80.15 7.741605 91.12772 117.00 6.122405 136866
29.75331 48.33475 40.97444 5.67 21.97389 33.48496 50.12395 16.92363 7.935121 34.48760 42.40 15.78270 53.99965 9.380952 6.525785 78.21 8.006191 90.49530 118.49 6.172944 138855
29.85761 48.98656 40.70626 5.42 21.79483 33.63696 49.76180 16.93280 8.089535 34.65064 41.80 15.92319 53.57900 9.247619 6.525785 76.12 8.055189 90.49530 113.41 6.288461 139549
30.38858 50.76755 40.63921 5.34 21.87441 33.36496 50.61335 17.41896 7.420411 33.94094 42.16 15.63549 53.41270 8.638095 6.737709 74.85 7.751404 88.74397 111.26 5.970789 139051
30.49288 50.52887 40.90739 5.40 22.18278 34.19002 50.95592 17.92345 7.617716 34.58351 42.58 16.00822 55.37899 8.752380 6.840016 74.51 7.878798 93.39472 112.81 6.324561 140928
30.45495 50.67575 41.18515 5.36 22.31210 34.20815 50.84826 17.84090 7.669187 34.59310 42.58 15.93177 55.42790 8.809523 6.847324 75.30 7.917995 93.39472 111.09 6.375099 141478
30.39806 49.93214 40.54343 5.34 21.94405 33.75482 49.92819 17.30888 7.523353 33.87381 41.76 15.77885 54.04856 8.676190 6.891170 75.17 7.859199 93.16122 113.70 6.158504 139490
30.83421 50.10657 38.89603 5.32 21.88436 33.67323 49.84989 17.09791 7.557667 33.78749 43.08 15.81708 53.15835 8.476190 6.891170 72.44 7.957194 97.05307 112.23 6.086307 139303
30.64458 49.61083 38.41713 5.17 21.33725 32.97510 48.93961 16.97867 7.514775 33.27919 42.57 15.63549 51.73010 8.142857 6.876555 71.92 7.790602 97.05307 113.83 6.035767 137481
30.56873 50.74919 38.21599 5.19 21.09851 31.95965 48.79279 17.18047 7.386096 33.02984 41.80 15.42524 51.90619 7.942857 6.913094 73.77 7.849400 97.05307 111.86 5.985229 136743
30.93851 51.41018 38.07232 5.16 21.02888 31.69671 48.84174 17.02453 7.343204 32.94352 42.72 15.33922 51.21162 7.657142 6.810785 74.09 7.790602 89.32774 110.60 5.739755 136187
30.53080 50.82264 37.86161 5.18 20.57130 31.64232 48.89067 17.42813 7.231684 32.75171 42.90 15.39656 51.66162 7.571428 6.810785 72.87 7.594613 89.57098 111.12 5.768634 135299
30.29376 49.49148 37.99570 5.12 20.79014 31.75111 49.42901 17.51068 7.403254 33.05861 42.12 15.38701 51.43662 7.666666 6.730401 71.90 7.643610 89.57098 111.00 5.941909 135250
30.14206 49.94132 39.38450 5.07 20.77025 31.90524 49.44859 17.48317 7.437568 32.95312 42.39 15.34878 50.39967 7.723809 6.752324 74.10 7.741605 89.57098 111.60 5.775854 135511
29.83864 49.84951 40.31356 5.10 20.63099 32.38577 49.42901 17.51068 7.497617 33.11615 43.30 15.32011 50.86923 7.809523 6.628093 74.73 7.761204 89.60990 109.07 5.876932 135565
29.38353 50.08821 40.58175 5.10 20.15351 31.79644 49.53667 17.21716 7.317469 32.81885 43.29 14.97605 50.68337 7.504761 6.576938 73.71 7.555414 89.60990 112.53 5.552040 133382
29.44042 51.45609 40.19863 5.00 19.75561 32.16818 49.91840 17.19881 7.343204 32.93393 42.76 14.98561 50.91814 7.238095 6.803478 72.50 7.457419 89.60990 110.30 5.494281 134167
29.72486 52.78724 39.57606 4.94 19.78545 31.73299 50.17289 17.07957 7.231684 32.54072 42.58 14.93782 50.47793 7.142857 6.869247 73.70 7.359424 89.60990 111.17 5.725315 134036
30.33169 52.71380 36.40576 5.06 20.10377 32.08658 50.65250 17.14377 7.377519 33.18329 42.47 15.17675 50.96706 7.428571 7.037325 73.24 7.457419 89.60990 110.44 5.797513 135368
30.28428 51.89674 34.70089 5.07 19.96451 31.78737 50.40780 17.13460 7.283154 32.75171 42.30 14.98561 50.50728 7.180952 7.037325 74.21 7.281028 89.60990 110.30 5.725315 133808
30.32221 51.13477 34.64342 5.24 20.13361 31.92338 51.45511 17.40979 7.283154 32.49277 41.90 14.87092 50.18445 7.142857 6.971555 74.17 7.428021 89.60990 109.39 5.694315 133524
30.36013 50.63903 35.34734 5.16 19.83519 31.25245 51.04402 17.12543 7.163056 32.12833 41.48 14.75624 49.63663 6.838095 6.840016 75.79 7.212432 89.60990 109.78 5.437815 132129
30.75836 50.32690 35.20298 5.30 19.84514 31.43379 50.75038 17.01536 7.223105 32.38727 41.97 14.72757 49.99859 6.647619 6.803478 75.15 7.183033 93.39472 110.68 5.540415 132726
31.07125 49.42722 35.46281 5.26 19.79540 31.79644 51.07338 17.13460 7.334626 33.11615 42.72 14.96649 50.58554 6.990476 6.927709 74.88 7.281028 94.86390 111.43 5.686987 133990
30.94799 49.07836 35.71303 5.18 19.59645 31.87804 51.04402 17.06122 7.343204 32.67499 42.19 14.84225 50.76163 6.723809 6.847324 76.89 7.183033 96.80983 111.35 5.665001 133071
30.54028 49.34459 35.78040 5.15 18.25355 31.68542 50.64271 16.88694 7.411833 32.92435 40.99 14.87092 51.13336 6.876190 6.569631 75.35 7.222231 97.05307 109.70 5.621030 132437
30.49288 49.73935 35.67453 5.17 18.62160 32.02105 49.69328 16.83191 7.386096 32.84762 40.48 14.98477 52.12140 6.838095 6.613477 76.38 7.222231 88.59801 107.00 5.811573 132971
30.63510 49.67509 35.73228 5.16 18.52213 32.37483 49.88904 16.40079 7.411833 32.81885 40.62 15.01347 51.80836 6.857142 6.584246 76.30 7.222231 92.43150 111.10 5.708972 133151
30.67302 49.36296 36.72350 5.17 18.60171 32.78302 50.52525 16.71266 7.617716 32.89557 39.79 14.99434 51.87683 6.990476 6.503862 75.75 7.418221 92.43150 106.00 5.936159 134538
30.84369 49.72099 37.53188 5.39 18.81060 33.36358 52.99181 17.04288 7.737816 33.70118 39.65 15.10916 51.69097 7.066666 6.598862 76.75 7.506417 92.43150 105.06 6.742304 136528
28.94737 50.85018 36.66576 5.57 18.83050 33.59035 53.42248 17.37309 8.364046 34.14234 39.54 15.27183 52.34640 6.704761 6.671939 76.93 7.428021 92.43150 105.78 6.595732 135913
29.12752 50.79510 35.81889 5.76 18.99961 33.79899 52.93309 17.14158 8.115270 33.61486 39.13 15.21442 52.23879 6.685714 6.664632 77.49 7.339825 92.78176 103.50 6.441832 135623
29.20337 51.32756 35.23185 5.67 19.13887 34.49747 52.94287 17.10439 8.458410 34.85204 39.27 15.56847 53.81378 6.695238 6.745728 76.70 7.486818 92.78176 105.28 6.566418 137914
28.98530 51.39920 35.24147 5.27 19.17866 34.17091 52.71775 16.82552 8.201056 34.21907 38.87 15.43450 53.81378 6.409523 6.753100 78.46 6.967444 93.40446 104.60 6.053417 136687
28.61552 50.76252 35.11637 5.14 19.74566 34.12555 52.76669 17.04861 8.132426 34.04644 38.80 15.31968 52.17031 6.361904 6.686749 74.99 6.898848 95.35038 104.93 5.965474 136356
28.60603 50.66750 34.61594 4.94 20.54146 34.00763 52.19899 16.75115 8.063799 34.43006 38.81 15.33881 51.22141 6.304761 6.701494 76.79 6.898848 96.32335 107.80 5.980130 136341
28.78619 50.55347 35.03938 4.97 20.95925 34.25254 51.48447 16.74185 8.166741 34.46842 37.59 15.64502 51.95510 6.580952 6.767846 80.90 6.928246 96.80983 106.84 6.229302 137322
28.48277 50.59148 34.25987 4.93 19.69592 33.25730 51.88578 16.71396 7.969436 33.59568 36.85 15.10916 50.68337 6.533333 6.657259 83.33 6.634261 96.80983 106.70 5.980130 134432
28.65344 50.36342 34.71218 4.98 19.75561 33.27561 51.37681 16.71396 7.926543 33.84504 37.30 15.15700 51.48553 6.361904 6.627770 81.95 6.702858 100.15682 106.83 6.068073 134667
28.71981 50.79103 34.55820 4.93 19.58650 33.31226 51.19083 16.66749 7.737816 33.28878 37.50 15.10916 49.69533 6.361904 6.568791 83.50 6.644061 96.00000 106.73 5.906845 134511
29.54590 52.06437 36.08835 5.10 20.39225 34.24650 52.61987 17.08580 8.106691 34.28620 38.05 15.60674 49.92033 6.571428 6.789962 82.86 6.800853 96.00000 109.90 6.251288 137968
29.72044 52.18790 36.30969 5.26 19.94461 34.07248 52.27729 17.05791 8.123849 34.19030 38.18 15.64502 50.42902 6.780952 6.893176 84.08 6.771454 97.00000 108.15 6.295260 138025
29.50711 52.65353 36.17496 5.38 20.27288 33.84350 51.49426 16.99284 8.226790 34.17112 37.73 15.60674 49.88120 6.666666 6.915292 86.00 6.791053 97.99000 108.60 6.309917 137771
29.73014 52.62502 36.31932 5.60 20.52156 34.41137 51.85641 17.07650 8.278262 34.76573 38.35 15.72157 50.36054 6.838095 6.959527 89.60 6.859650 94.00000 108.38 6.537104 139206
29.99195 52.64403 36.39630 6.02 20.93935 35.12579 51.70959 17.12298 8.123849 35.13976 38.58 16.06605 51.65184 7.466666 6.966900 88.05 7.104637 94.00000 111.22 6.925519 141049
30.15679 52.79607 36.24232 6.58 21.27757 35.25402 51.33765 17.20665 8.149585 35.07262 37.87 16.10432 50.62467 7.800000 6.974272 87.26 7.153635 96.50000 112.25 6.940176 141422
30.22467 52.83408 36.38668 6.14 20.97915 35.53593 51.43553 17.04861 8.389782 34.81368 37.97 15.99906 50.69315 7.885714 7.003762 88.15 7.016441 96.75000 111.20 6.859561 141125
30.37982 52.63453 36.26157 6.84 20.31267 34.93114 51.15168 16.97425 8.364046 34.42047 37.99 15.81607 50.34097 7.761904 7.011134 88.10 6.918447 96.75000 109.00 6.749633 140335
30.11801 52.83408 36.42517 6.20 20.17340 34.62875 50.86784 16.93707 8.321154 34.12316 37.51 15.80649 49.63663 7.828571 6.915292 87.17 6.889049 96.75000 107.65 6.888875 139864
30.11801 52.93860 35.84776 6.40 20.31267 34.76620 50.57419 17.15087 8.655717 34.37251 37.32 16.12262 50.32141 8.238095 7.025878 86.73 7.036041 96.01000 109.61 6.844904 140993
29.66226 53.42324 36.42517 6.17 21.03883 35.15107 50.88741 17.21594 8.964542 35.09181 36.55 16.51538 49.84207 8.828571 7.188071 87.24 7.134036 96.01000 108.53 6.998805 142640
29.77862 53.55627 36.03061 6.58 20.83988 34.98612 50.50568 17.32749 8.818707 34.92876 36.59 16.42916 48.96164 8.485714 7.247050 84.98 6.996842 96.00000 106.33 6.830247 141792
30.01134 53.39473 35.58792 6.50 21.28752 34.68373 50.80910 17.48552 8.792973 34.72737 37.09 16.27589 48.95185 8.495238 7.143836 84.88 6.918447 96.00000 107.15 6.830247 141618
30.55436 53.76533 35.87663 6.63 21.93410 34.71123 49.72264 17.16946 8.681452 34.95754 37.63 16.16094 49.47033 8.809523 7.033251 84.77 6.869450 99.99000 105.77 6.859561 142349
30.43800 54.18344 35.44357 6.73 22.10320 34.77537 50.45674 17.36468 8.732923 34.93836 37.91 16.31421 49.32359 9.523809 7.077486 84.84 6.918447 99.99000 104.98 6.910862 143151
30.23437 54.16443 35.55906 6.83 22.19273 34.25305 49.36049 17.24383 8.552773 34.68900 38.15 16.12262 48.99099 9.380952 6.819452 84.37 6.898848 99.99000 104.39 6.778947 142272
30.49618 54.63956 35.13562 6.83 21.75504 34.82119 49.42901 17.10439 8.604245 35.06304 37.97 16.31421 49.20620 10.076190 6.996389 83.78 6.859650 99.00000 103.29 7.328591 143547
30.57375 54.82961 35.38583 7.42 21.82468 34.72955 49.60519 17.03002 8.612823 34.76573 38.47 16.27589 49.46055 10.228571 7.011134 83.49 6.889049 99.00000 105.08 7.475163 144062
30.75799 54.92463 35.32809 7.99 21.75504 35.22438 49.82053 17.15087 8.612823 35.15894 38.24 16.84109 49.79316 10.771428 7.055368 82.45 6.938046 98.50000 107.99 7.379891 145594
30.45739 54.82011 35.34734 8.07 21.98384 35.27020 49.65413 16.99284 8.518460 35.11099 38.89 16.66865 50.06707 10.695238 7.062741 82.58 6.889049 98.50000 109.96 7.255305 145500
30.11801 55.03866 34.98164 7.45 21.50636 35.73753 49.42901 17.03002 8.372626 35.66724 38.06 16.96563 50.56597 10.580952 7.018507 82.42 6.977243 97.00000 107.97 7.101405 145865
30.41860 55.11469 35.71303 7.10 21.39694 35.22438 49.28219 16.91847 8.432675 35.08222 38.18 16.99437 50.10619 10.323809 7.040624 81.01 6.898848 97.00000 108.85 7.218663 145109
30.93253 54.80110 35.31847 7.05 22.01368 35.78335 49.06686 16.82552 8.338312 35.71519 38.58 17.09974 49.93989 10.476190 7.136464 80.50 6.987043 97.00000 109.78 6.940176 146425
31.63069 55.01015 35.50131 7.13 21.99378 35.54510 48.89067 16.89059 8.295419 35.40829 38.91 16.96563 50.07685 10.361904 7.077486 80.21 6.918447 98.02000 111.06 7.064762 146492
31.37858 55.31424 34.98164 6.56 21.67547 35.26103 49.17452 16.91847 8.158163 35.13017 39.15 16.83151 49.01055 10.495238 7.018507 79.15 6.781254 98.02000 111.29 6.866890 145306
31.27192 54.24995 34.95277 6.76 21.99378 35.43514 48.40128 16.91847 8.166741 35.22607 39.24 16.91773 48.31227 10.657142 7.018507 77.89 6.793708 100.55000 110.43 7.028119 145447
30.84526 54.43050 35.10744 6.54 22.00373 35.63673 48.12721 16.64890 8.149585 35.49461 38.91 17.09016 49.07364 10.114285 7.092230 80.35 6.922452 101.00000 110.50 6.896204 146337
30.50587 54.71558 35.31981 6.11 21.97389 35.80168 48.84174 16.76974 8.080956 35.43707 38.13 17.23353 49.30106 9.142857 7.018507 79.59 6.882838 102.00000 104.10 6.940176 146237
30.42830 55.40926 34.54758 6.11 21.81473 35.15779 48.83194 16.95566 8.209634 35.21649 38.39 16.94127 48.54958 9.142857 7.188071 78.69 6.823418 101.00000 97.09 6.984148 145517
30.13740 55.77986 34.87577 6.17 21.64562 34.77274 49.03749 16.83481 8.106691 34.76573 38.30 16.66720 48.31227 8.723809 7.261795 78.12 6.773901 103.00000 100.28 6.778947 143950
30.05983 55.67533 35.13640 5.89 21.46657 35.02944 49.62477 16.96495 8.149585 34.76573 38.24 16.67695 47.47180 8.714285 7.379753 76.42 6.773901 103.00000 96.67 6.918190 144201
29.78832 56.62559 34.44139 6.01 21.29746 34.62607 48.45022 16.52805 8.149585 34.63146 37.91 16.57942 46.48301 8.533333 7.409242 71.74 6.595641 100.55000 95.42 6.734975 143608
29.89498 55.82737 34.48966 5.58 21.09851 34.07601 47.85315 16.36072 7.995170 33.77790 37.73 16.30635 45.58321 8.552380 7.261795 70.52 6.387670 99.50000 97.15 6.581075 141356
29.72044 56.25499 34.26764 5.76 21.00899 34.14018 46.81564 16.27706 8.141006 33.84504 37.64 16.56967 45.06904 8.657142 7.431360 68.46 6.397573 99.50000 97.30 6.610390 142145
29.29378 56.16947 35.90863 5.79 21.07862 34.08517 46.67860 16.28636 8.020906 33.88340 37.28 16.65745 45.85018 8.542857 7.446105 67.57 6.318347 98.56000 101.38 6.485804 141708
29.03197 55.94140 35.41633 5.48 20.50167 34.04850 47.16800 16.14692 8.149585 33.80667 36.02 16.43313 45.82052 8.390476 7.401870 69.52 6.278733 98.56000 97.08 6.456489 140680
29.31318 56.77763 36.52641 5.35 20.77025 34.18602 47.18757 16.28636 8.115270 33.94094 36.30 16.50140 46.14682 8.190476 7.556691 68.35 6.249023 98.56000 98.30 6.830247 141783
29.10955 56.77763 36.03412 5.35 20.59120 34.33270 46.97224 16.22128 8.080956 33.81627 35.32 16.73546 46.08749 8.361904 7.549318 69.71 6.140086 97.52000 98.58 6.852233 141683
28.84774 57.83241 36.12099 5.30 20.21319 34.33270 46.61988 16.26777 8.132426 34.22866 34.60 16.93052 46.15671 8.485714 7.667276 69.19 6.189603 97.52000 93.70 6.852233 142604
28.55684 57.30027 37.09593 5.09 20.26293 34.25019 46.78627 16.41650 8.252526 34.41088 34.20 17.12557 45.84029 7.809523 7.534573 69.24 6.110376 97.52000 92.35 7.050105 142200
28.82834 57.13873 38.75622 5.06 20.79014 34.36938 46.61988 16.08185 8.458410 34.84246 36.12 17.24260 45.81063 8.000000 7.630414 70.51 6.149990 97.52000 91.50 6.984148 143399
28.84774 57.87042 38.16740 5.20 20.66083 34.98361 46.69818 16.23058 8.681452 35.00549 35.41 17.56444 46.66099 7.942857 7.733627 69.89 6.209410 100.55000 94.31 7.035448 144509
28.61502 57.77539 38.29288 5.23 20.43204 34.65357 46.47306 16.10044 8.844444 34.77532 35.15 17.33037 46.50278 7.961904 7.755744 68.71 6.159893 100.55000 96.36 7.086748 144085
28.94470 58.80167 38.63073 5.33 20.58125 34.93777 47.19736 16.37002 8.861600 35.07262 36.21 17.34988 46.69065 7.942857 7.682021 70.25 6.179699 100.55000 95.00 6.984148 144873
29.27439 58.68763 40.00144 5.27 20.54146 34.91026 47.63782 16.54664 9.058907 35.17812 36.86 17.53518 46.84886 7.495238 7.718883 68.86 6.219313 100.55000 96.30 7.350577 145721
28.93501 58.65913 39.93387 5.38 20.41214 34.86443 48.05870 16.69537 9.076063 35.58092 37.05 17.63271 46.55223 7.695238 7.740999 68.65 6.249023 100.00000 97.00 7.262634 146172
29.09015 58.59261 40.22345 5.43 20.74041 35.15779 48.06849 16.51875 9.144691 35.75355 37.00 17.77899 47.05651 8.114285 7.711510 69.11 6.298540 100.00000 102.54 7.299277 146969
29.08046 59.10575 40.85089 5.42 20.84983 35.27697 48.42085 16.83481 9.101798 34.61228 36.43 17.78874 47.46191 8.247619 7.836841 70.60 6.229217 100.00000 102.00 7.130719 147429
29.10955 60.17953 40.59026 5.50 21.10846 36.06538 48.05870 16.70467 9.084641 35.19730 36.00 18.36415 47.38280 8.123809 8.153853 69.75 6.229217 100.00000 101.84 7.350577 148633
28.98349 60.63566 40.01110 5.78 21.51631 36.01954 47.65739 16.71396 9.076063 35.30280 35.77 17.65221 48.01563 8.095238 7.999033 70.63 6.288637 102.58000 106.44 7.335920 148780
28.84774 62.01353 40.63853 5.50 21.78489 36.15706 47.85315 16.76974 9.076063 35.14935 36.03 17.71073 47.51135 8.066666 8.175970 71.49 6.377767 102.58000 104.48 7.423863 149540
29.18712 62.09904 41.31423 5.27 21.96394 36.76023 47.52036 16.71396 8.732923 36.06045 36.44 17.90578 47.49157 7.942857 8.058012 71.85 6.239120 105.00000 103.43 7.116062 150454
29.33257 61.40536 41.26596 5.10 22.15294 36.65017 48.36213 17.20665 9.050327 36.21390 36.75 17.96335 48.23317 7.980952 8.013778 72.26 6.179699 105.00000 104.45 7.284619 150704
29.91438 62.46014 41.99958 5.29 22.49116 36.80610 47.86294 17.34608 9.076063 36.97155 37.81 18.34410 48.38148 8.323809 8.227577 72.00 6.338153 104.75000 104.00 7.621735 153294
30.06952 62.24158 42.38570 5.10 22.73984 36.80610 47.61824 17.08580 9.016013 37.46982 38.46 18.26600 49.06375 7.609523 8.175970 71.85 6.357960 103.00000 94.65 7.892893 153339
31.20404 61.55740 43.43786 5.17 22.76968 36.84278 46.61008 16.98354 10.002542 37.65917 38.85 18.28552 49.03408 7.752380 8.183343 69.00 6.348057 103.00000 94.48 8.383908 154064
31.37858 61.96601 43.79501 5.32 22.66026 37.09042 45.70960 16.88999 10.285633 37.95813 39.23 18.62721 49.33072 8.019047 8.220205 69.61 6.268830 105.00000 92.50 7.658378 155257
32.19310 61.80447 44.43210 5.57 23.34663 37.80581 45.56278 16.85226 10.225584 38.98456 40.30 19.02748 45.56343 8.657142 8.205205 69.61 6.506511 105.04000 93.60 7.717007 157749
31.36888 62.48865 43.33168 5.55 22.68015 36.94367 47.05054 17.30493 10.354260 39.36325 40.01 18.97867 45.28657 8.714285 8.242706 69.78 6.367863 105.04000 93.50 7.738993 157633
31.50464 62.40313 43.26411 5.20 22.38173 37.09042 46.64924 16.99372 10.414311 39.14400 39.83 19.01772 45.97873 8.628571 8.130203 69.83 6.179699 105.04000 90.62 7.489820 157162
31.70827 62.02302 42.89730 5.13 22.32205 37.23717 46.35560 16.89942 10.560146 39.32338 39.79 19.00796 45.99850 9.133333 8.115202 70.22 5.545884 106.77000 90.10 7.599749 157739
31.88281 61.97551 42.44361 5.21 22.38173 36.96201 47.47142 17.05030 10.431468 39.12407 39.85 18.86152 45.58321 8.695238 8.055201 73.86 5.436947 106.77000 91.30 7.673035 156993
31.98947 61.78546 41.93201 5.49 21.76499 36.77858 47.50079 16.82397 10.500095 39.04435 40.04 18.63698 45.39534 9.019047 8.025200 73.33 5.268590 106.77000 92.29 7.709679 156522
31.82463 61.71894 42.13472 5.62 21.46657 36.54929 47.30503 16.77682 10.532555 38.77529 39.41 18.45148 44.75262 8.885714 7.942698 72.16 5.080426 106.77000 92.42 7.834264 155381
31.58221 61.91850 41.71965 5.61 21.88436 36.65935 47.28545 16.56935 10.427420 38.70553 38.80 18.34410 45.18769 9.171428 7.980199 73.80 4.980000 106.77000 87.84 7.746321 154770
31.55312 61.85198 41.69069 5.65 21.72520 36.52177 46.96245 16.34302 10.800169 38.61584 38.54 18.35386 45.97873 9.428571 8.077701 77.23 5.070000 107.10000 90.50 7.914879 155278
31.30100 62.33661 41.46867 6.13 21.85452 36.60432 46.78627 16.56935 10.675920 39.01446 37.52 18.50030 46.06772 9.771428 8.115202 78.00 5.030000 107.60000 92.33 7.973507 155910
31.25252 63.26786 42.85869 5.98 22.10320 37.46646 46.84500 16.71081 10.828842 39.56255 37.99 19.05677 46.97740 9.628571 8.302707 78.90 5.170000 107.60000 90.71 7.936864 158555
31.41737 63.03030 42.52084 6.02 22.04352 37.33805 47.17779 16.73910 11.067783 39.52269 37.71 19.01772 46.96751 9.638095 8.265206 78.50 5.100000 105.00000 91.48 7.966179 158292
30.82587 64.04707 42.71389 5.94 22.35189 38.19102 46.57094 16.72967 10.867072 39.62234 37.21 19.18369 46.66099 9.790476 8.250206 78.60 5.100000 105.00000 92.23 8.295965 159072
30.88405 64.54119 43.61161 6.15 22.14300 37.89525 46.47306 16.73910 10.800169 39.16394 37.56 18.89081 47.20483 9.847619 8.295207 79.65 5.030000 106.00000 92.70 8.281308 158611
31.09737 65.07334 44.02668 6.66 22.51417 38.73940 47.17779 16.84283 10.847958 40.06082 37.58 19.09502 47.51135 10.085714 8.295207 78.76 5.230000 107.50000 93.83 8.618423 161092
31.33010 67.17340 43.48612 6.95 22.38000 38.73940 47.91188 17.06916 10.819283 40.02096 39.33 18.56732 47.53112 10.704761 8.542713 78.58 5.160000 108.50000 94.29 8.545137 161755
31.53373 68.34221 44.36662 7.12 22.77000 39.69366 48.48937 17.33322 11.325841 41.10719 39.59 18.83117 48.04530 11.095238 8.587714 79.59 5.240000 107.50000 95.15 8.574451 164456
30.41860 66.72678 45.53673 6.72 21.16000 37.85854 49.42901 17.58784 10.628131 39.10415 39.26 17.70736 46.75987 10.009523 8.340208 78.20 4.920000 108.93000 93.92 7.438520 157369
30.69981 66.27065 46.58008 6.75 21.60000 38.04206 49.32134 17.63499 10.933976 38.79522 39.35 17.83440 47.51135 10.038095 8.302707 75.51 4.900000 108.93000 93.76 7.570435 158187
30.89374 66.30867 46.47282 6.33 21.49000 37.95947 49.38007 17.76702 10.914861 38.41653 39.80 17.59986 48.04530 9.542857 8.362709 75.28 4.770000 108.93000 93.95 7.548449 157981
30.97132 67.52499 47.26264 6.48 21.60000 38.25822 50.57419 18.13481 10.981765 38.36671 39.60 17.91258 47.68933 9.514285 8.550213 76.85 4.750000 108.93000 91.37 7.533792 159075
30.45739 68.41823 47.34065 6.17 21.57000 38.22912 48.42085 17.69158 11.402303 38.74539 38.93 18.11780 48.25294 9.123809 8.647716 75.91 4.820000 108.93000 91.03 7.717007 159189
30.63193 68.61000 48.28649 5.99 21.70000 38.56863 48.01955 17.68214 11.612571 39.69210 39.41 18.23506 48.88577 9.400000 8.647716 77.74 4.830000 108.93000 90.80 7.988164 160766
30.73860 69.03000 48.44250 5.81 22.01000 39.15065 47.67697 18.09709 11.603014 40.30996 39.50 18.48914 49.05386 9.371428 8.805220 76.62 4.750000 109.75000 88.99 7.936864 162482
29.80771 69.29000 48.69603 5.42 21.71000 38.14182 47.88251 18.04950 11.689032 38.84505 38.55 17.98098 48.62868 9.047619 8.940223 78.59 4.650000 109.90000 87.85 7.768307 158578
30.13740 70.17000 48.55951 5.35 21.55000 37.80230 48.73407 18.16832 11.810000 37.95813 38.57 17.83440 46.48301 8.761904 8.895222 78.32 4.600000 109.90000 88.49 7.526464 157327
29.96286 70.35000 48.75453 5.33 21.59000 37.99631 51.53341 18.59000 11.780000 38.41653 38.55 17.91258 46.98729 8.904761 8.992724 78.63 4.630000 109.90000 90.79 8.251994 157923
30.06952 70.85000 48.48151 5.27 21.44000 38.34552 51.32000 18.29000 11.720000 38.57598 38.21 18.07871 45.95895 8.809523 8.960000 79.32 4.430000 109.90000 92.12 8.559795 158473
30.15679 72.92000 47.66000 5.27 21.30000 38.42313 51.20000 18.51000 11.440000 37.46982 39.41 17.82463 45.97873 8.561904 9.050000 80.85 4.390000 109.90000 91.90 8.164051 158142
30.31000 72.90000 48.28000 5.36 21.75000 39.05365 51.50000 18.61000 11.900000 38.29695 40.42 17.99076 47.24438 8.847619 9.080000 80.58 4.470000 109.90000 92.01 8.510000 160456
30.41000 73.12000 48.75000 5.35 21.85000 39.06626 51.68000 18.60000 11.790000 38.36671 40.60 17.98098 47.37292 8.809523 9.110000 80.60 4.500000 109.90000 92.51 9.070000 160897
30.73000 72.12000 48.71000 5.24 21.72000 38.94637 51.55000 18.72000 11.730000 38.36671 41.14 18.06893 47.54000 8.904761 8.940000 80.71 4.480000 109.90000 93.11 8.740000 160490
30.82000 71.96000 48.51000 5.13 21.92000 39.19615 51.45000 18.76000 11.940000 38.50000 41.42 18.15508 48.36000 8.940000 9.000000 79.13 4.510000 110.02000 92.22 8.870000 161125

5 Calculo dos Retornos Logáritmos dos Ativos

Para o estudo do retorno dos ativos foi empregado o metodo de calculo logarítmo do retorno dos ativos. Metodo apropriado para a correta estimativa de séries temporais com negociação contínua1

Os retornos foram calculados através da seguinte expressão:

\[R_{i} = \log \Bigg(\frac{P_{t}}{P_{t-1}} \Bigg)\]

Ou ainda:

\[R_{0,T} = \ln \Big( \frac{P_{T}}{P_{0}} \Big) = \sum_{t = 1}^{T} \ln \Big(\frac{P_{t}}{P_{t-1}} \Big) = \sum_{t=1}^{T} R_{t}\]

Onde:

\(R_{i}\) é o retorno logarítmo do ativo \(i\);

\(P_{t}\) é o valor do preço do ativo observado no momento \(t\)

\(P_{t-1}\) é o valor do preço do ativo observado no momento \(t-1\)

Retornos historico dos Ativos - Ajustados
PETR4.SA.Adjusted VALE3.SA.Adjusted WEGE3.SA.Adjusted AMER3.SA.Adjusted BBAS3.SA.Adjusted ITUB4.SA.Adjusted SUZB3.SA.Adjusted KLBN11.SA.Adjusted ALPA4.SA.Adjusted EQTL3.SA.Adjusted PRIO3.SA.Adjusted BBDC4.SA.Adjusted PSSA3.SA.Adjusted MGLU3.SA.Adjusted GOAU4.SA.Adjusted JBSS32.SA.Adjusted GMAT3.SA.Adjusted BNBR3.SA.Adjusted MELI34.SA.Adjusted GUAR3.SA.Adjusted IBOV
0.0327361657 -0.0087991258 -0.0002363280 -0.043328036 -0.0065207935 0.0091247747 -0.0058341977 -0.0206642336 -0.0077390551 -0.0002746762 0.0172338143 0.0304845142 0.0032465896 0.0042017129 -0.0400052398 0.0045766469 0.007623855 0.0000000000 -7.610147e-03 -0.002469047 0.0050591560
0.0222939291 -0.0066031399 -0.0007096028 0.000000000 0.0009340854 0.0076775709 -0.0005664460 0.0092973836 0.0022171801 0.0035650277 -0.0020802076 0.0097560485 0.0177630638 0.0083507266 -0.0064655204 -0.0072013804 0.006309101 0.0000000000 -6.660873e-03 0.006161426 0.0048885624
0.0242699786 -0.0133386212 0.0030714095 -0.014870148 0.0079052267 -0.0120909332 0.0216709370 0.0010882217 0.0132014967 -0.0035650277 0.0174315954 -0.0115958656 -0.0075202128 -0.0733087025 -0.0065076665 0.0075926773 -0.021615507 0.0079043328 6.406415e-04 -0.016099442 -0.0042688956
-0.0098857704 0.0320903106 0.0035324246 0.018553390 0.0179026561 0.0180824165 0.0025839928 0.0070442159 0.0054496540 0.0141844826 -0.0183575426 0.0212579581 0.0131235634 0.0649579759 0.0075880664 0.0189891542 0.017834850 -0.0027330760 2.395589e-02 0.023443309 0.0147795029
0.0224106946 -0.0459981988 -0.0269225488 0.046687070 -0.0036462620 0.0059556856 -0.0301267001 -0.0284794593 -0.0098307153 -0.0076127716 0.0194937599 0.0149122749 0.0040891047 -0.0222585563 -0.0075880664 -0.0278967361 0.010050326 -0.0052770479 -1.766288e-02 -0.003665152 -0.0029917749
-0.0009110218 -0.0033122347 0.0108082439 0.025975504 -0.0041180656 -0.0059556856 0.0032243263 0.0022196937 0.0054733949 -0.0021857027 -0.0075230725 -0.0077266179 -0.0050208433 0.0021413419 -0.0021787385 -0.0152472498 -0.006269669 0.0052770479 9.093265e-05 0.006101278 -0.0008863045
-0.0027385461 -0.0260988276 -0.0052693939 -0.003424658 -0.0213167681 -0.0051723512 -0.0179600191 -0.0246926126 -0.0109769128 -0.0173821936 -0.0032087900 -0.0083883332 -0.0026134077 -0.0549588988 -0.0287629122 0.0043991517 -0.028062976 -0.0540672121 -2.457532e-03 -0.024631779 -0.0116086036
-0.0253021847 0.0125412388 0.0013002316 0.131599882 -0.0122528017 -0.0021854614 -0.0023161455 0.0034033145 0.0142466515 -0.0092270264 -0.0071420962 -0.0078525114 -0.0014964691 0.0067568248 0.0044791802 -0.0286042542 0.000000000 0.0000000000 2.768213e-02 0.008690359 -0.0041291117
-0.0198838727 -0.0001977955 -0.0038535885 -0.092907078 0.0164593177 0.0186969539 0.0019304685 0.0028271765 0.0086675332 0.0111732832 -0.0398590341 0.0030274132 0.0106136704 0.0211001372 -0.0022370091 0.0262071256 0.025544147 0.0000000000 3.046812e-02 0.032829577 0.0044864095
-0.0051134946 -0.0011879245 0.0091281534 -0.026757424 -0.0084308918 -0.0181504283 -0.0069672885 -0.0062304910 -0.0097561173 -0.0227570532 -0.0128347226 -0.0085005689 -0.0016683370 0.0032913565 -0.0192205306 0.0121920166 -0.008866420 0.0000000000 1.273030e-02 -0.001196726 -0.0102443995
0.0079783140 0.0296665190 0.0294520040 -0.006802741 0.0158659458 -0.0074082866 0.0023278273 0.0163430008 0.0226181335 0.0082073173 0.0197882838 0.0091047812 0.0116204002 0.0312693190 0.0181000370 0.0537205677 0.018904136 0.0000000000 -4.594978e-03 0.005970066 0.0098725154
-0.0079783140 0.0165922879 -0.0168583150 0.011874558 0.0060003747 -0.0011020647 -0.0089529690 0.0000000000 -0.0171864221 -0.0056529173 0.0004777940 0.0012076988 0.0024616950 -0.0128206617 -0.0112740922 0.0004992002 -0.005422368 0.0398615089 -2.134473e-03 0.009478710 -0.0018103516
0.0054322134 -0.0041697649 0.0101023384 -0.044835053 0.0164312596 0.0185746319 0.0011723277 0.0308225138 0.0021645105 0.0190908597 0.0125788437 0.0155692657 0.0186510876 0.0574570479 0.0123945858 -0.0245023932 0.033606144 -0.0069641606 1.265462e-02 0.008220881 0.0144278782
0.0034992834 0.0133951266 -0.0065665899 -0.045093302 -0.0081818819 0.0045288652 -0.0072513584 0.0005418432 0.0192726111 0.0047164717 -0.0142520769 0.0088617466 -0.0078203033 -0.0143151599 0.0000000000 -0.0270864264 0.006101347 0.0000000000 -4.381895e-02 0.018540517 0.0049855709
0.0176271205 0.0357114853 -0.0016483602 -0.014870148 0.0036446881 -0.0081190825 0.0169677000 0.0283062700 -0.0863368243 -0.0206942844 0.0085755793 -0.0182327040 -0.0031086873 -0.0681840168 0.0319585713 -0.0168249880 -0.038442471 -0.0195424912 -1.913978e-02 -0.051837248 -0.0035750218
0.0034263193 -0.0047126257 0.0065773874 0.011173290 0.0139987896 0.0244274823 0.0067457447 0.0285510684 0.0262422312 0.0187550374 0.0099128019 0.0235589004 0.0361517280 0.0131436447 0.0150702321 -0.0045527172 0.016301270 0.0510794061 1.383514e-02 0.057561417 0.0134083493
-0.0012446561 0.0029027336 0.0067670116 -0.007434971 0.0058128257 0.0005302794 -0.0021151597 -0.0046165525 0.0067339931 0.0002771554 0.0000000000 -0.0047875515 0.0008828342 0.0065075475 0.0010677794 0.0105468021 0.004962780 0.0000000000 -1.536432e-02 0.007959006 0.0038951063
-0.0018696427 -0.0147826927 -0.0157040032 -0.003738318 -0.0166334280 -0.0133407262 -0.0182600675 -0.0302737214 -0.0191986918 -0.0210121420 -0.0194457991 -0.0096444186 -0.0252001263 -0.0152507177 0.0063829819 -0.0017279845 -0.007453376 -0.0025033282 2.322272e-02 -0.034565682 -0.0141513139
0.0142461080 0.0034873469 -0.0414817457 -0.003752346 -0.0027234793 -0.0024202514 -0.0015695693 -0.0122635353 0.0045506490 -0.0025513907 0.0311199914 0.0024198689 -0.0166076913 -0.0233215248 0.0000000000 -0.0369935241 0.012391708 0.0409264374 -1.301301e-02 -0.011792469 -0.0013414973
-0.0061690545 -0.0099430367 -0.0123885612 -0.028600632 -0.0253178326 -0.0209503630 -0.0184290893 -0.0069985960 -0.0056915225 -0.0151582474 -0.0119091221 -0.0115467992 -0.0272354382 -0.0401199589 -0.0021230907 -0.0072043020 -0.021158244 0.0000000000 1.415576e-02 -0.008338472 -0.0131656911
-0.0024782051 0.0226865581 -0.0052494745 0.003861005 -0.0112519915 -0.0312786086 -0.0030045342 0.0118152781 -0.0172717419 -0.0075210415 -0.0182534514 -0.0135386242 0.0033981650 -0.0248680442 0.0052995059 0.0253977347 0.007518878 0.0000000000 -1.745803e-02 -0.008408348 -0.0053824740
0.0120241430 0.0129405823 -0.0037664824 -0.005797158 -0.0033056747 -0.0082610828 0.0010025668 -0.0091177539 -0.0058239865 -0.0026166684 0.0217709019 -0.0055918401 -0.0134714916 -0.0366341793 -0.0149098725 0.0043284216 -0.007518878 -0.0829459109 -1.132802e-02 -0.041878133 -0.0040743104
-0.0132656461 -0.0114943507 -0.0055500035 0.003868473 -0.0219999476 -0.0017176041 0.0010014847 0.0234302520 -0.0153034372 -0.0058394235 0.0042046383 0.0037312623 0.0087487014 -0.0112571627 0.0000000000 -0.0166034516 -0.025479035 0.0027193949 4.690648e-03 0.005018813 -0.0065417971
-0.0077942442 -0.0265413445 0.0035354373 -0.011650606 0.0105820098 0.0034322631 0.0109507935 0.0047256339 0.0234477474 0.0093268722 -0.0183491996 -0.0006207148 -0.0043647462 0.0125001788 -0.0118727675 -0.0134007834 0.006430877 0.0000000000 -1.080522e-03 0.029595232 -0.0003622264
-0.0050204969 0.0090481933 0.0358993817 -0.009813565 -0.0009573369 0.0048427832 0.0003959851 -0.0015726949 0.0046242372 -0.0031962666 0.0063898091 -0.0024877753 -0.0203657250 0.0074257614 0.0032520966 0.0301392258 0.012739001 0.0000000000 5.390835e-03 -0.028344371 0.0019279001
-0.0101170568 -0.0018400155 0.0233155017 0.005899670 -0.0067275135 0.0149486836 -0.0003959851 0.0015726949 0.0080413945 0.0049353254 0.0212401464 -0.0018696681 0.0092735688 0.0110362942 -0.0185695899 0.0084661512 0.002528503 0.0004343939 -2.293116e-02 0.017348657 0.0003984123
-0.0153700960 0.0047768488 0.0066304378 0.000000000 -0.0234157551 -0.0183646968 0.0021758261 -0.0169047474 -0.0243208150 -0.0090181008 -0.0002309348 -0.0227138936 -0.0036604420 -0.0398062516 -0.0077478568 -0.0137432001 -0.026873089 0.0000000000 3.122997e-02 -0.056869440 -0.0162340383
0.0019341987 0.0269431334 -0.0094854860 -0.019802609 -0.0199407560 0.0116233227 0.0076764507 -0.0010661788 0.0035108731 0.0035004420 -0.0123186357 0.0006379970 0.0046215052 -0.0361796248 0.0338646768 -0.0165519009 -0.013054990 0.0000000000 -2.001589e-02 -0.010457574 0.0058681008
0.0096154640 0.0255407479 -0.0156085274 -0.012072570 0.0015093411 -0.0136209985 0.0050850903 -0.0069575065 -0.0153034372 -0.0120112459 -0.0042183444 -0.0031939992 -0.0086830779 -0.0132451767 0.0096205694 0.0164161959 -0.013227744 0.0000000000 7.856591e-03 0.041189800 -0.0009768721
0.0202090726 -0.0013922245 -0.0834973788 0.024001129 0.0159604104 0.0110812204 0.0095137556 0.0037523551 0.0199654661 0.0195541067 -0.0025867294 0.0158684443 0.0096432184 0.0392206952 0.0241735561 -0.0062610671 0.013227744 0.0000000000 -6.588136e-03 0.012531448 0.0098885752
-0.0015641806 -0.0156212785 -0.0479616232 0.001974379 -0.0069513206 -0.0093687597 -0.0048426146 -0.0005351735 -0.0128732792 -0.0130911331 -0.0040109051 -0.0126744451 -0.0090619396 -0.0339015672 0.0000000000 0.0131572090 -0.023937331 0.0000000000 -1.268455e-03 -0.012531448 -0.0115910591
0.0012515401 -0.0147912889 -0.0016575908 0.032980603 0.0084346369 0.0042694710 0.0205637745 0.0159325708 0.0000000000 -0.0079377389 -0.0095012047 -0.0076825116 -0.0064122703 -0.0053191280 -0.0093897806 -0.0005391686 0.019987366 0.0000000000 -8.284481e-03 -0.005429201 -0.0021246997
0.0012499757 -0.0097420535 0.0201152912 -0.015384905 -0.0149330175 -0.0212408502 -0.0080213963 -0.0164679195 -0.0166273860 -0.0112794371 -0.0100744910 -0.0077419898 -0.0109760923 -0.0436036353 -0.0190482081 0.0216066388 -0.029453274 0.0000000000 3.558879e-03 -0.046091112 -0.0105025189
0.0130315168 -0.0061829727 -0.0040921759 0.026770307 0.0005013479 0.0057855109 -0.0057692951 -0.0064480969 0.0083482843 0.0080274186 0.0117437341 -0.0019448830 0.0072656098 -0.0282505007 -0.0053561368 -0.0084802334 -0.004084475 0.0413690130 8.164806e-03 0.018692101 0.0045081347
0.0101212823 -0.0180383869 0.0073538162 -0.007575786 -0.0025094493 0.0114710835 0.0063443533 0.0069834456 0.0153214084 0.0222556886 0.0177121168 0.0160930468 0.0116709283 0.0502899591 0.0180951255 -0.0035993410 0.013550382 0.0156083909 6.753436e-03 0.026111195 0.0094783175
-0.0039749163 -0.0070830370 0.0070309939 -0.015326047 -0.0101010539 0.0025630434 -0.0005750582 -0.0042917305 0.0011689437 -0.0134111884 -0.0124840296 -0.0083361077 0.0034749945 -0.0388938955 -0.0116712093 0.0264890256 -0.013550382 0.0203053110 -7.182138e-04 -0.003873513 -0.0068823499
-0.0132616174 0.0054099613 0.0018844742 -0.005808290 -0.0709890146 -0.0060608319 -0.0078930306 -0.0102675183 0.0093024239 0.0076024095 -0.0288550181 0.0019299337 0.0072964583 0.0224099719 -0.0414002219 -0.0202319163 0.005442246 0.0025094073 -1.492904e-02 -0.007792161 -0.0047757597
-0.0015534886 0.0079682378 -0.0029630354 0.003875970 0.0199628027 0.0105368742 -0.0189255491 -0.0032644410 -0.0034784374 -0.0023331781 -0.0125201618 0.0076263164 0.0191384351 -0.0055555349 0.0066518898 0.0135769410 0.000000000 -0.0911484916 -2.492051e-02 0.033336384 0.0040239987
0.0046533692 -0.0012928182 0.0016172991 -0.001936153 -0.0053560740 0.0109878521 0.0039316028 -0.0259467549 0.0034784374 -0.0008761438 0.0034525162 0.0019138194 -0.0060241195 0.0027815211 -0.0044297215 -0.0010478676 0.000000000 0.0423583314 3.760185e-02 -0.017812227 0.0013527632
0.0012370925 -0.0063033315 0.0273625662 0.001936153 0.0042872953 0.0125294798 0.0126718991 0.0188369328 0.0273988768 0.0023349889 -0.0206448824 -0.0012754301 0.0013208025 0.0192579373 -0.0122837105 -0.0072345339 0.026775373 0.0000000000 -4.699159e-02 0.039023262 0.0103628645
0.0055487974 0.0072268778 0.0217738296 0.041672657 0.0111672806 0.0175540344 0.0476641658 0.0195658527 0.0156428921 0.0241947577 -0.0035246609 0.0076287352 -0.0035892178 0.0108401465 0.0145010240 0.0131149421 0.011818893 0.0000000000 -8.907502e-03 0.127339370 0.0146830348
-0.0634528396 0.0224564559 -0.0233474408 0.032849725 0.0010571186 0.0067741200 0.0080942176 0.0191904749 0.0778227725 0.0130054667 -0.0027781457 0.0107088428 0.0126000598 -0.0525709413 0.0110134146 0.0023425350 -0.010498763 0.0000000000 6.829862e-03 -0.021978878 -0.0045147466
0.0062040456 -0.0010837773 -0.0233679534 0.033542430 0.0089404222 0.0061920144 -0.0092030649 -0.0134158174 -0.0301948625 -0.0155700566 -0.0104233774 -0.0037665584 -0.0020577487 -0.0028448988 -0.0010958634 0.0072529468 -0.011944443 0.0037822986 -2.178984e-02 -0.023609897 -0.0021359975
0.0026007308 0.0104279328 -0.0165247953 -0.015748383 0.0073029592 0.0204551392 0.0001848332 -0.0021716824 0.0414138134 0.0361435155 0.0035714167 0.0230040348 0.0297041609 0.0014235679 0.0120947032 -0.0102471996 0.019828831 0.0000000000 1.705184e-02 0.019155524 0.0167513248
-0.0074955388 0.0013947686 0.0002730300 -0.073158772 0.0020769149 -0.0095115412 -0.0042612069 -0.0164386912 -0.0308983750 -0.0183286588 -0.0102381629 -0.0086422224 0.0000000000 -0.0436116896 0.0010922992 0.0226872605 -0.071895349 0.0066889832 -6.479919e-03 -0.081345571 -0.0089366620
-0.0128396300 -0.0124641835 -0.0035561956 -0.024977305 0.0291357798 -0.0013282317 0.0009278858 0.0131724109 -0.0084035565 -0.0050577371 -0.0018024904 -0.0074673290 -0.0310158787 -0.0074571285 -0.0098738418 -0.0452341863 -0.009894054 0.0206192522 3.149927e-03 -0.014634404 -0.0024245277
-0.0003314603 -0.0018736886 -0.0143530539 -0.039687711 0.0395112386 -0.0034614572 -0.0108168906 -0.0176021329 -0.0084745387 0.0112046923 0.0002577538 0.0012484232 -0.0183561393 -0.0090226747 0.0022025724 0.0237196924 0.000000000 0.0101524337 2.698422e-02 0.002453882 -0.0001100122
0.0062779759 -0.0022530703 0.0121581642 0.006054455 0.0201348606 0.0071759577 -0.0137830007 -0.0005551260 0.0126852028 0.0011135397 -0.0319399191 0.0197660391 0.0142223185 0.0428743895 0.0098523655 0.0521394077 0.004252301 0.0050377853 -8.945333e-03 0.040822014 0.0071694325
-0.0105961846 0.0007515876 -0.0224978886 -0.008080845 -0.0621683030 -0.0294865192 0.0077644812 -0.0016671153 -0.0244562901 -0.0256459908 -0.0198824844 -0.0348512301 -0.0247820072 -0.0072622415 -0.0164749053 0.0295948074 -0.043359448 0.0000000000 -1.311224e-03 -0.040822014 -0.0212700380
0.0059741466 -0.0045180980 0.0131158974 0.010090942 0.0030258242 0.0005504207 -0.0098578295 0.0000000000 -0.0053967155 0.0073948333 0.0121377290 0.0031614853 0.0157030651 -0.0265894734 -0.0044395183 -0.0166993824 0.010286696 0.0339886439 1.217673e-03 0.014598797 0.0017465696
0.0023136894 0.0084547670 -0.0044456721 -0.010090942 -0.0085968168 0.0011006205 -0.0036263742 -0.0027846784 -0.0240974503 -0.0165719169 0.0053476268 -0.0031614853 -0.0353899682 0.0000000000 -0.0089385331 0.0187373639 -0.008810684 -0.0423889882 -9.364907e-04 -0.026929273 -0.0011590845
0.0283576552 0.0247610389 0.0433251705 0.033901568 0.0403139859 0.0276589414 0.0275332970 0.0247878322 0.0465702942 0.0295224597 0.0145601313 0.0324015985 0.0045173393 0.0324034071 0.0331155315 -0.0076941878 0.023324698 0.0000000000 2.926856e-02 0.056675725 0.0253757941
0.0058900881 0.0023698552 0.0061145544 0.030890549 -0.0221957814 -0.0050944281 -0.0065316598 -0.0016335277 0.0021142317 -0.0028011178 0.0034107620 0.0024496315 0.0101385424 0.0313863682 0.0150864909 0.0146163043 -0.004332199 0.0103627870 -1.605171e-02 0.007009373 0.0004130540
-0.0072036855 0.0088825344 -0.0037174114 0.022557325 0.0163249102 -0.0067429813 -0.0150917332 -0.0038220113 0.0125919080 -0.0005611440 -0.0118563044 -0.0024496315 -0.0109227222 -0.0169976121 0.0032033503 0.0225785479 0.002890170 0.0101544323 4.152227e-03 0.002325557 -0.0018419417
0.0075299047 -0.0005415582 0.0039825478 0.040078185 0.0121922949 0.0166399975 0.0070082479 0.0049112890 0.0062371055 0.0172513517 0.0162989662 0.0073305410 0.0095638224 0.0253893221 0.0063763537 0.0410080067 0.010050456 -0.0415706286 -2.027849e-03 0.035371682 0.0103619639
0.0087677409 0.0003610714 0.0021174113 0.072320675 0.0201541858 0.0205488144 -0.0028352964 0.0027181815 -0.0188290135 0.0107011524 0.0059795669 0.0216746730 0.0253178478 0.0879393990 0.0010587611 -0.0174504333 0.035091250 0.0000000000 2.586669e-02 0.057718724 0.0131524973
0.0054812426 0.0028839597 -0.0042395260 0.088947478 0.0160229688 0.0036438680 -0.0072188677 0.0048741627 0.0031629313 -0.0019123372 -0.0185748412 0.0023795056 -0.0200867044 0.0436751476 0.0010576413 -0.0090126774 0.006872933 0.0262482261 9.218294e-03 0.002114211 0.0026409806
0.0022482676 0.0007196020 0.0039751601 -0.069210013 -0.0141244696 0.0079648376 0.0019047290 -0.0092268738 0.0290475536 -0.0074104026 0.0026371927 -0.0065577009 0.0013516641 0.0109290167 0.0042194147 0.0101477340 -0.019364464 0.0025873236 -9.398172e-03 -0.011683626 -0.0021023059
0.0051199505 -0.0037840810 -0.0034441828 0.107963034 -0.0322841281 -0.0171655925 -0.0055338739 -0.0043715153 -0.0030722382 -0.0113591171 0.0005266050 -0.0115036453 -0.0069713931 -0.0158251405 0.0010520777 -0.0005674105 -0.014064903 0.0000000000 -1.998247e-02 -0.016155402 -0.0056136010
-0.0086552517 0.0037840810 0.0045014365 -0.098238493 -0.0068795857 -0.0086944623 -0.0055645182 -0.0021930012 -0.0051413889 -0.0086749981 -0.0127154920 -0.0006058751 -0.0140901496 0.0085523357 -0.0137642486 -0.0106123016 -0.004258268 0.0000000000 -1.246264e-02 0.020419753 -0.0033618995
0.0000000000 0.0019764377 -0.0159789823 0.031748744 0.0068795857 0.0039613121 -0.0057894105 0.0125445526 0.0394191115 0.0072808278 -0.0050781515 0.0198027432 0.0137014887 0.0509891922 0.0158650214 -0.0050603306 0.021112635 -0.0076779570 1.804338e-02 -0.006403366 0.0080397219
-0.0152476581 0.0091130006 0.0159789823 -0.036599155 0.0351250453 0.0110093688 0.0061741221 0.0037868616 0.0350570461 0.0207105230 -0.0208482025 0.0240692374 -0.0095712944 0.0692240408 0.0228225643 0.0058630334 0.013831519 0.0000000000 -9.901996e-03 0.022234931 0.0116137298
0.0039151459 0.0024870898 -0.0108913189 0.064335883 -0.0095012189 -0.0047035762 -0.0075297228 0.0064585220 -0.0164017481 -0.0046570390 0.0010938179 -0.0052343649 -0.0178222385 -0.0396091643 0.0081717139 -0.0262469427 -0.019418183 -0.0001041835 -2.047914e-02 -0.024378601 -0.0059627785
0.0077847318 -0.0030209148 -0.0123624384 -0.012232557 0.0212522310 -0.0086806303 0.0059897624 0.0090788259 -0.0029224832 -0.0057826209 0.0135724124 -0.0093729757 -0.0001998641 0.0011217682 -0.0143445722 -0.0011775122 -0.011267703 0.0000000000 7.682253e-03 0.000000000 -0.0012279032
0.0179319011 0.0069168150 0.0080797907 0.019802645 0.0299215992 0.0007923493 -0.0216151100 -0.0182408326 -0.0127640578 0.0066061894 0.0144542374 -0.0070880162 0.0105358234 0.0363274463 -0.0156009383 -0.0012967949 -0.007107267 0.0407219682 -1.296284e-02 0.004282684 0.0051484969
-0.0038156179 0.0077464895 -0.0121441384 0.014970325 0.0076802284 0.0018461212 0.0146559027 0.0113056477 0.0059113127 -0.0005489339 0.0074132925 0.0094395676 -0.0029706296 0.0779616660 0.0062697469 0.0008254195 0.007107267 0.0000000000 -7.497006e-03 0.007450862 0.0056182284
-0.0067124237 -0.0003508112 0.0032529058 0.014749516 0.0040422332 -0.0151336493 -0.0219660005 -0.0069836178 -0.0208444717 -0.0071625975 0.0063108722 -0.0118134483 -0.0067660547 -0.0151136815 -0.0371396067 -0.0055551658 -0.002836807 0.0000000000 -5.636008e-03 -0.019272610 -0.0061592989
0.0086220838 0.0087336389 -0.0119795192 0.000000000 -0.0199191597 0.0164503334 0.0013871067 -0.0081191626 0.0060000943 0.0107248035 -0.0047293913 0.0118134483 0.0043832274 0.0714939767 0.0256149876 -0.0070176198 -0.005698010 -0.0099503095 -1.059330e-02 0.077961559 0.0089217894
0.0025404915 0.0034722512 0.0070961299 0.082854405 0.0031955980 -0.0026351040 0.0035580028 -0.0043573409 0.0009964880 -0.0085154497 0.0130823421 -0.0023515514 0.0051557252 0.0150096625 0.0021053317 -0.0034674623 0.004276548 0.0000000000 1.718141e-02 0.019802602 0.0035812548
0.0060078870 0.0017315801 -0.0016331463 0.074011664 -0.0031955980 0.0141474697 0.0043315993 0.0070710967 0.0000000000 0.0112468325 -0.0059966164 0.0341369050 0.0067021884 0.0517122060 0.0062893276 -0.0125348266 0.007087119 -0.0050633020 2.731663e-02 -0.012827000 0.0105781637
-0.0098210800 -0.0019049032 0.0005447145 0.009962713 0.0104618256 0.0012999110 -0.0033455205 -0.0092567955 -0.0110165903 -0.0013647588 0.0168550004 -0.0102919965 0.0054858923 -0.0070984767 0.0010443863 0.0015755306 -0.007087119 0.0000000000 1.807804e-02 -0.017025957 -0.0006458395
-0.0112054615 0.0039788492 -0.0103997842 -0.079939438 -0.0219588438 0.0131632238 -0.0045440816 0.0021856989 -0.0172679942 0.0157183700 -0.0215732345 0.0176594766 0.0099154171 -0.0107432320 -0.0062827419 -0.0019394389 0.012720926 -0.0153455697 -1.826323e-02 -0.021440361 0.0025054498
0.0099312009 0.0013803142 0.0206924183 -0.048119236 -0.0051009098 -0.0144631348 -0.0029747421 -0.0065718191 0.0071464724 -0.0165381202 0.0031479283 0.0016925760 -0.0091342235 -0.0246026251 0.0031463728 -0.0172554735 -0.011299464 0.0000000000 8.117352e-03 0.016377115 -0.0051963523
0.0167539716 -0.0057059693 -0.0111097091 -0.007067127 0.0284162155 0.0157442857 -0.0043789419 -0.0055095312 -0.0112532680 0.0178818229 0.0104222286 0.0061815677 -0.0033245055 0.0146522771 0.0135206095 -0.0063154458 0.012703039 0.0000000000 8.507578e-03 -0.039342584 0.0090281678
0.0223195973 0.0038075717 0.0051637122 0.011283607 -0.0009041034 -0.0066803024 -0.0035971095 0.0038599471 -0.0051574124 -0.0086302223 0.0085172281 -0.0078741437 0.0027386485 -0.0109690086 -0.0082986670 -0.0036090005 -0.009866232 0.0104605267 1.159222e-02 0.017792209 0.0004574675
-0.0080024629 0.0055125024 -0.0147464213 -0.083320656 -0.0145788191 -0.0080238977 0.0057889773 0.0016495841 -0.0166843736 -0.0078857233 0.0061491783 -0.0079365250 -0.0215232342 0.0127856418 -0.0083683153 -0.0133033784 -0.020029243 0.0000000000 2.068841e-03 -0.028408041 -0.0081289559
-0.0034050732 -0.0194281533 -0.0008256203 0.030032330 0.0145788191 0.0049254987 -0.0158494825 0.0000000000 0.0010509466 0.0027262787 0.0022962161 0.0051093335 -0.0143499441 0.0153085888 0.0000000000 -0.0160472385 0.001834924 0.0254836413 -7.757576e-03 0.023207811 0.0009698955
-0.0137373742 0.0033225105 0.0044154817 -0.033085764 0.0004522406 0.0056730135 -0.0056784034 -0.0160621962 -0.0021029988 0.0075942960 -0.0084453944 0.0101409001 0.0156364162 -0.0522814208 0.0104494138 0.0310945061 0.018773101 0.0044653703 6.336821e-04 -0.018947931 0.0061004220
-0.0110638367 0.0052238359 0.0060307580 -0.068010365 -0.0013572489 0.0046179021 0.0147374239 0.0072322713 -0.0084568564 -0.0016224318 -0.0202498812 0.0083538032 0.0046235712 -0.1009759527 -0.0104494138 -0.0095036624 -0.005738935 0.0098522964 -5.966356e-02 0.006355952 -0.0006835878
-0.0025461516 0.0125982980 -0.0221064441 0.000000000 -0.0072694419 -0.0181487229 -0.0002005111 0.0110253336 0.0157982005 -0.0062440387 0.0067955912 -0.0171044267 -0.0153601188 0.0000000000 0.0238723651 -0.0113722972 -0.008670563 -0.0098522964 -6.971362e-02 0.006315809 -0.0049356750
-0.0096061474 0.0066661054 0.0094550297 0.009772055 -0.0077821869 -0.0110123000 0.0042004460 -0.0071525734 -0.0126185071 -0.0128823049 -0.0023471168 -0.0163099879 -0.0048998686 -0.0469168925 0.0102041688 -0.0072699724 -0.007283332 0.0196084714 3.232792e-02 -0.029821183 -0.0108269012
-0.0025773221 -0.0018756694 0.0074452463 -0.046442875 -0.0083063919 0.0073549550 0.0119049251 0.0077007014 0.0052771630 0.0000000000 -0.0015677442 0.0005850611 -0.0175497816 -0.0010923609 0.0161131360 -0.0220017231 0.000000000 0.0000000000 -3.666316e-02 0.020332413 0.0017421426
-0.0090733320 0.0169237294 -0.0199785125 0.020168812 -0.0079089042 -0.0115819821 -0.0239532079 -0.0260906911 0.0000000000 -0.0038696059 -0.0086672066 -0.0058652661 -0.0210490340 -0.0209836181 0.0039880407 -0.0631959757 -0.026668283 -0.0240738417 -1.301492e-02 -0.026840027 -0.0041207943
0.0035743591 -0.0141966447 0.0014003430 -0.074236024 -0.0093853850 -0.0160132578 -0.0123998280 -0.0101754684 -0.0191293536 -0.0249555919 -0.0047594037 -0.0166077587 -0.0195473264 0.0022295578 -0.0201011767 -0.0171521324 -0.032039349 -0.0104975024 1.796801e-02 -0.023116086 -0.0158058343
-0.0058555980 0.0076304279 -0.0064579659 0.031748752 -0.0042522286 0.0018815085 -0.0219197710 -0.0051267098 0.0180760762 0.0019855651 -0.0023882233 0.0160194852 -0.0113438616 0.0121750477 0.0230818686 -0.0296466902 0.001549197 0.0000000000 1.542829e-03 0.004444547 0.0055661323
-0.0144597060 -0.0015214076 0.0467761115 0.005194771 0.0033088905 -0.0016125367 -0.0029314207 0.0005709731 -0.0148622612 0.0011327767 -0.0096103414 0.0052833040 0.0171835738 -0.0132890936 0.0019821608 -0.0130855267 -0.012461154 -0.0094921692 4.107679e-02 -0.019026882 -0.0030790610
-0.0089775797 -0.0040685761 -0.0138045903 -0.055027181 -0.0277529153 -0.0010764335 0.0104297780 -0.0085985455 0.0159155385 -0.0022669509 -0.0343826046 -0.0135577669 -0.0006471661 -0.0179982350 -0.0059583084 0.0284503396 -0.006289371 0.0000000000 -4.334041e-02 -0.004530043 -0.0072807948
0.0096394097 0.0148376497 0.0308625651 -0.024008561 0.0130153040 0.0040306930 0.0004149628 0.0085985455 -0.0042195472 0.0039637137 0.0077433678 0.0041457898 0.0070959788 -0.0241252133 0.0207006505 -0.0169728918 -0.004743124 0.0000000000 1.248866e-02 0.056275141 0.0078099121
-0.0069709613 0.0000000000 -0.0135694118 0.000000000 -0.0086579893 0.0042815440 -0.0045737645 -0.0040034399 -0.0042373092 -0.0036800777 -0.0273683532 0.0140847253 -0.0012863405 0.0207141028 -0.0009760857 0.0197022255 -0.017586348 -0.0106080243 2.844362e-03 0.003213818 -0.0007055520
-0.0090346569 0.0184069187 0.0024079277 -0.009389687 -0.0185281489 0.0000000000 -0.0075298062 0.0028612847 0.0063491911 0.0121213075 -0.0205957291 0.0115875658 0.0015006663 0.0146978692 0.0155041826 -0.0074873876 0.008032148 0.0000000000 -5.077026e-02 0.000000000 0.0064793903
-0.0101352093 -0.0092440557 0.0266330537 -0.040428996 0.0024576443 -0.0024060846 0.0035627946 0.0091011546 0.0146600574 0.0053095025 -0.0116279716 0.0114549421 -0.0068788139 -0.0830401388 -0.0174592803 0.0007223207 -0.012882557 0.0000000000 -1.451247e-02 0.028467812 -0.0028370407
0.0094626975 -0.0028231827 0.0437840934 -0.005911389 0.0256858307 0.0034737234 -0.0035627946 -0.0205956269 0.0246418742 0.0124639538 0.0546210326 0.0068105726 -0.0006472225 0.0240976417 0.0126399326 0.0181758746 0.006462023 0.0000000000 -9.246718e-03 -0.009399511 0.0083964373
0.0006725118 0.0127243262 -0.0153096471 0.027292117 -0.0062394122 0.0177136476 0.0016781425 0.0092061234 0.0260275287 0.0046682211 -0.0198524372 0.0184930267 0.0183921767 -0.0071685341 0.0134358385 -0.0088320053 0.009615446 0.0305976958 3.024823e-02 0.007318436 0.0077108347
-0.0080999463 -0.0016434307 0.0032824466 0.005752693 -0.0111353953 -0.0094789153 -0.0048324139 -0.0080507716 0.0186007239 -0.0065970013 -0.0073696001 -0.0134155026 -0.0033962402 0.0023951658 0.0028558460 -0.0170278330 -0.008006502 0.0000000000 2.150398e-02 0.007265198 -0.0029383861
0.0114556720 0.0176072738 0.0087840599 0.018939942 0.0072762099 0.0081676933 0.0154653398 0.0166049501 0.0019378301 0.0085130026 0.0297106368 0.0011249316 0.0040318349 -0.0023951658 -0.0095511692 0.0221655725 0.003210297 0.0000000000 -1.421429e-02 -0.014583634 0.0054540934
0.0113258594 -0.0019412252 0.0348672429 -0.011320865 -0.0019351456 -0.0007875374 0.0092888680 0.0107315940 0.0220210971 0.0030035082 0.0177916703 0.0106233883 0.0033826792 -0.0580051451 0.0047869877 -0.0199848414 0.006389841 0.0000000000 1.359146e-02 0.051135852 0.0058363380
-0.0116609322 -0.0004857981 -0.0016905153 0.020658037 -0.0063152817 -0.0013137598 0.0087961841 0.0089486785 0.0018921020 0.0113852821 0.0051413623 0.0055464645 -0.0063518675 0.0263338482 0.0028611702 -0.0030543123 0.004765651 -0.0054849606 7.242628e-03 -0.012036251 0.0030901759
0.0053475429 -0.0011345995 0.0072253548 0.009250707 0.0159538700 0.0083790425 0.0002037369 -0.0106354786 0.0075329136 0.0048399271 -0.0013504185 0.0082621706 0.0107743145 0.0530244357 -0.0038167362 0.0066782925 0.007892754 0.0000000000 5.554200e-02 0.005032733 0.0054376697
-0.0003333973 0.0087195310 0.0154783889 -0.001843273 0.0052618618 0.0033840932 0.0073037114 0.0189527264 -0.0047014564 -0.0324410220 -0.0155252932 0.0005481630 0.0085783413 0.0162983668 0.0161217916 0.0213306760 -0.011067304 0.0000000000 -5.280162e-03 -0.023363182 0.0031250238
0.0009998585 0.0180041775 -0.0064004161 0.014652263 0.0123282411 0.0221031727 -0.0075074483 -0.0077604627 -0.0018867471 0.0167608979 -0.0118736809 0.0318345562 -0.0016681034 -0.0151253975 0.0396547943 -0.0121127022 0.000000000 0.0000000000 -1.569895e-03 0.030366700 0.0081334763
-0.0043398272 0.0075507973 -0.0143713798 0.049655627 0.0191371797 -0.0012717613 -0.0083853129 0.0005561330 -0.0009447102 0.0029927767 -0.0064093724 -0.0395393438 0.0132672412 -0.0035231613 -0.0191699712 0.0125375238 0.009493729 0.0254728138 4.417855e-02 -0.001995922 0.0009885245
-0.0046948297 0.0224693971 0.0155597160 -0.049655627 0.0124054242 0.0038106531 0.0040992141 0.0033315696 0.0000000000 -0.0043561554 0.0072423248 0.0033094312 -0.0105580346 -0.0035357361 0.0218787175 0.0121026054 0.014073746 0.0000000000 -1.858577e-02 0.011916657 0.0050952108
0.0116960036 0.0013780699 0.0164903902 -0.042717733 0.0081855156 0.0165443888 -0.0069787031 -0.0033315696 -0.0385404403 0.0255906352 0.0113151438 0.0109529644 -0.0004163112 -0.0154672108 -0.0145324966 0.0050230414 -0.021978902 0.0233173503 -1.010064e-02 -0.042345027 0.0060934741
0.0049710068 -0.0112333981 -0.0011688894 -0.032789838 0.0085683365 -0.0029985320 0.0175586634 0.0290512480 0.0357008377 0.0042463263 0.0084711910 0.0032102968 0.0154945785 0.0047846682 -0.0055046001 0.0056901640 -0.009569515 0.0000000000 9.813400e-03 0.023410679 0.0016602585
0.0196406064 0.0170314490 0.0176215711 0.036577718 0.0151518096 0.0042454097 -0.0103754281 0.0080709958 0.0028396026 0.0207057358 0.0284354286 0.0209742511 0.0030703286 0.0420622471 0.0263293091 -0.0036046363 0.025317825 -0.0023837914 -4.317560e-03 0.045238800 0.0170399981
0.0051729849 -0.0035053161 0.0091513292 -0.036577718 0.0109964518 0.0000000000 -0.0051255774 -0.0151190900 -0.0066382907 0.0133870597 0.0170450621 -0.0042668089 0.0140032211 -0.0897194574 -0.0062922124 -0.0020855277 0.003120148 -0.0168475706 -9.420501e-02 0.034958790 0.0002935105
0.0370354002 -0.0110532731 0.0245204219 0.013632182 0.0013113946 0.0009962390 -0.0213990447 -0.0060028795 0.1038370755 0.0050405766 0.0100893212 0.0010683841 -0.0006047654 0.0185994138 0.0009013651 -0.0404740867 -0.001558857 0.0000000000 -1.797686e-03 0.060351413 0.0047169438
0.0055779681 0.0066159570 0.0081885838 0.028600632 -0.0048171303 0.0066988037 -0.0195086144 -0.0055239355 0.0279087654 0.0079071695 0.0097337110 0.0185141328 0.0060314130 0.0338196805 0.0044944466 0.0088017394 -0.012559043 0.0192313619 -2.117956e-02 -0.090514021 0.0077137079
0.0256267641 -0.0026103329 0.0144422686 0.045921749 0.0298399511 0.0191042633 -0.0032171879 -0.0022358704 -0.0058552575 0.0266821130 0.0269097015 0.0212608544 -0.0794415456 0.0765650488 -0.0018264807 0.0000000000 0.037213621 0.0003808886 1.182172e-02 0.007626388 0.0159233539
-0.0259359039 0.0110092677 -0.0250783047 -0.003597123 -0.0289625115 -0.0230685936 0.0321313222 0.0265061624 0.0125052540 0.0096668420 -0.0072220691 -0.0025686834 -0.0060949683 0.0065790126 0.0045600198 0.0024391743 -0.021539365 0.0000000000 -1.068931e-03 0.002844982 -0.0007356159
0.0043184367 -0.0013695942 -0.0015605782 -0.065139373 -0.0132451718 0.0039643303 -0.0085658385 -0.0181473850 0.0057828850 -0.0055852844 -0.0045089378 0.0020555145 0.0151682452 -0.0098847665 -0.0137428014 0.0007163248 -0.029994330 0.0000000000 -3.128647e-02 -0.032726707 -0.0029924259
0.0064426478 -0.0061097326 -0.0085145331 -0.013552907 -0.0026701490 0.0039487789 -0.0063144519 -0.0055647478 0.0139061781 0.0045720605 -0.0010047957 -0.0005135328 0.0004300062 0.0568518560 -0.0018468362 0.0055694450 -0.108213578 0.0163357180 -5.754822e-03 0.014570403 0.0036646479
0.0054895096 -0.0007662710 -0.0106323265 0.015474182 0.0026701490 -0.0074166688 0.0237857788 0.0088888825 -0.0122601275 -0.0050813816 0.0015067195 -0.0077339981 -0.0090693584 -0.0491551783 -0.0074211695 0.0505382296 -0.019838389 0.0000000000 1.323067e-02 0.009597021 -0.0047405500
0.0033399388 -0.0030713398 -0.0121269757 0.052348351 -0.0279423360 -0.0049752173 0.0006183225 -0.0133631300 0.0065573318 -0.0020396872 0.0047566104 -0.0119760253 -0.0041299909 0.0365631179 -0.0037313401 -0.0072015906 -0.031454806 0.0000000000 1.078498e-02 0.004764254 -0.0030046432
-0.0051664690 -0.0010771581 0.0048226783 0.023403430 -0.0138059597 -0.0062538509 -0.0041296049 -0.0028066900 0.0030865616 -0.0069151419 -0.0158593900 -0.0100029443 -0.0142593645 -0.0148938794 -0.0103335609 -0.0160839006 -0.036367701 0.0000000000 1.407582e-03 0.016030402 -0.0073164098
-0.0076464171 0.0032281846 -0.0098999436 -0.001780900 0.0192755348 0.0030067964 -0.0004139323 -0.0124436807 -0.0100320587 -0.0018005894 -0.0155993604 -0.0058368929 0.0096747140 0.0316481986 0.0047103147 0.0224728465 -0.019965264 0.0000000000 -5.082645e-02 -0.011288923 -0.0039400214
-0.0009214801 -0.0010749657 -0.0006944267 0.007104819 -0.0072993765 -0.0037599103 -0.0068543300 -0.0137538151 0.0351229387 -0.0023199589 -0.0067235402 0.0005319044 0.0173539936 0.0276515512 0.0121439237 0.0454292531 0.017910957 0.0030860065 2.983291e-02 0.021526401 0.0032769149
-0.0080223376 0.0078047920 -0.0053395288 0.081539207 0.0059347194 0.0022577464 -0.0037586006 0.0137538151 -0.0115710870 0.0102697092 -0.0268225504 0.0079470694 0.0019336565 0.0357181074 0.0046318320 0.0099208006 -0.007920826 0.0046576703 2.001928e-02 0.007380086 0.0040618589
-0.0015501254 0.0148285900 0.0329700948 -0.024774197 0.0113148939 0.0232797819 0.0012544372 0.0085011245 0.0142224508 0.0139507621 0.0124488750 0.0296357176 0.0195542165 -0.0147278499 0.0228424856 0.0114724205 0.027452677 0.0000000000 -1.770154e-02 -0.004606189 0.0168226186
0.0052607976 -0.0037619610 -0.0079141748 0.006666685 -0.0027039283 -0.0034331260 0.0070789599 0.0016915869 0.0218253427 -0.0010081170 -0.0073977244 -0.0020512980 -0.0002104999 0.0009886865 -0.0045268762 -0.0050826224 -0.013632182 -0.0244602834 8.452811e-03 0.003686659 -0.0016601076
-0.0190066935 0.0160027103 0.0045300394 -0.013378113 0.0138922265 0.0225875981 -0.0129464831 -0.0005636204 -0.0183011785 0.0025182933 -0.0133477692 0.0086889552 -0.0065477344 0.0156865958 -0.0018165272 0.0012730552 0.000000000 0.0000000000 8.165088e-03 0.040564334 0.0049155013
0.0018855924 0.0076854265 0.0207991576 0.034742954 -0.0093896751 -0.0077748021 -0.0021039800 0.0005636204 -0.0061755280 -0.0116368870 0.0093621731 -0.0153848333 0.0115877030 0.0058196452 0.0054397120 0.0132703755 -0.013820495 0.0094787440 5.082946e-03 -0.001768328 -0.0029022662
0.0068836193 0.0082113209 0.0094724915 0.079667364 0.0166234744 0.0220315090 0.0150504631 0.0061780427 0.0044150423 0.0226424986 0.0005323518 0.0107523231 0.0064724624 0.0238902950 0.0000000000 -0.0112367746 0.038991256 0.0140517535 1.211621e-02 0.039901227 0.0155209667
0.0074558303 0.0317623863 -0.0123540445 0.042622170 -0.0059770403 0.0000000000 0.0154403167 0.0133483777 -0.0026467737 -0.0009954767 0.0455155903 -0.0280246414 0.0004161380 0.0595685530 0.0294007772 -0.0022880435 -0.013474732 0.0092593254 4.890495e-03 -0.008539778 0.0041072145
0.0064784846 0.0172502189 0.0200455951 0.024166077 0.0172762348 0.0243343503 0.0119810658 0.0153511772 0.0457568748 0.0267795717 0.0065889320 0.0141104900 0.0107594857 0.0358274292 0.0052539417 0.0127711734 0.015384905 -0.0092593254 9.079461e-03 0.003424623 0.0165602124
-0.0360033004 -0.0239211400 0.0260318400 -0.057819586 -0.0733313004 -0.0473349202 0.0191929017 0.0145829503 -0.0635825791 -0.0499543622 -0.0083704189 -0.0615330829 -0.0271188997 -0.1029790041 -0.0292444374 -0.0176188023 -0.063012909 0.0132146293 -1.301127e-02 -0.142115122 -0.0440496911
0.0092020129 -0.0068592716 0.0226536509 0.004454382 0.0205807326 0.0048356402 -0.0021805706 0.0026774395 0.0283706758 -0.0079315422 0.0022897900 0.0071486374 0.0159432760 0.0028504235 -0.0045065902 -0.0350044824 -0.004073321 0.0000000000 -1.704988e-03 0.017578574 0.0051845114
0.0062972837 0.0005735023 -0.0023053100 -0.064242281 -0.0051056323 -0.0021732303 0.0011899986 0.0074587447 -0.0017497913 -0.0098090774 0.0113709570 -0.0132379572 0.0111756237 -0.0505944681 0.0072008508 -0.0030506470 -0.026888924 0.0000000000 2.024345e-03 -0.002908356 -0.0013031049
0.0025078393 0.0181770378 0.0168525401 0.023420289 0.0051056323 0.0078393752 0.0238945115 0.0204892739 0.0061109212 -0.0012978765 -0.0050378134 0.0176119509 -0.0074365214 -0.0029985717 0.0221737555 0.0206409711 -0.004201683 0.0000000000 -2.784547e-02 -0.001943677 0.0069010165
-0.0167328754 0.0131415862 0.0016491342 -0.049021663 -0.0013898861 -0.0007609711 -0.0435108465 -0.0247445683 0.0375791788 0.0098217543 -0.0170639103 0.0113914764 0.0117490768 -0.0419070075 0.0113390114 -0.0123069739 0.014629346 0.0000000000 -3.728118e-03 0.024028114 0.0007163864
0.0057143195 0.0027990231 0.0197824553 -0.029607476 0.0060088495 0.0088417718 -0.0083223347 -0.0005332682 0.0182728679 0.0241404562 0.0122544179 0.0064516529 0.0130294693 0.0298222936 0.0000000000 0.0238214217 0.002072488 0.0000000000 -2.529790e-03 0.034534446 0.0098577161
0.0034760909 0.0061028694 0.0032257884 -0.030510813 0.0141846102 0.0149778657 -0.0071597242 0.0231956021 -0.0008233065 0.0154461908 0.0022810846 0.0138373024 0.0034326986 -0.0030442123 0.0180494978 -0.0145117228 -0.016701834 0.0074995751 -2.013534e-02 -0.006442717 0.0106173348
-0.0307519559 0.0037594338 0.0052198724 -0.069484731 -0.0137239642 -0.0261059314 0.0043019033 -0.0026327604 0.0073860408 -0.0370178973 -0.0243445917 -0.0278688716 -0.0087054454 -0.0351638220 0.0152158162 0.0253862432 -0.021277378 0.0013658233 -1.289318e-02 -0.021466004 -0.0243206406
0.0109998079 0.0126202343 -0.0028073022 -0.012999286 -0.0073971606 -0.0089411567 0.0176278874 0.0065610238 0.0102957336 -0.0230969717 0.0005186841 -0.0081855538 -0.0451267315 -0.0320884085 -0.0050462578 -0.0034414240 -0.010810957 0.0000000000 7.258730e-03 -0.031627000 -0.0079201440
-0.0058083599 0.0025619187 0.0040080346 -0.003745319 0.0018544704 0.0051189456 0.0558520992 0.0229446183 -0.0025435102 0.0120043443 -0.0005186841 0.0043739937 0.0107904355 0.0161729070 0.0109016064 0.0039502767 0.006500610 0.0000000000 2.565963e-02 0.092029606 0.0037811306
0.0035535745 0.0070821827 -0.0056157416 -0.011320865 -0.0069718905 0.0091488216 -0.0041498583 -0.0162692975 -0.0051063486 0.0041418817 -0.0088588427 0.0092317479 -0.0221286009 -0.0107528595 -0.0036456212 0.0087370287 -0.044157348 0.0000000000 1.454295e-02 0.036621401 0.0034766593
0.0028980951 0.0287979801 -0.0170899443 0.000000000 -0.0065513242 0.0020217214 -0.0023409869 0.0119566265 -0.0241808577 -0.0290939721 0.0309223498 -0.0141538920 0.0004301912 -0.0285106634 0.0099945475 0.0191052673 -0.009070349 0.0000000000 -2.391059e-03 -0.047335787 -0.0020908682
0.0050674491 -0.0002742648 0.0129249025 0.016933641 0.0209067206 0.0162769134 0.0058422607 0.0053879645 0.0394224188 0.0218344319 0.0253050793 0.0092770893 0.0271548455 0.0328257998 0.0033094054 -0.0033450647 0.018059165 0.0000000000 1.196244e-03 0.041501471 0.0145263981
0.0032938232 0.0030133048 0.0096878265 -0.001867457 0.0045871815 0.0003226773 0.0034890577 -0.0005375022 -0.0092866567 0.0018197820 0.0044433623 -0.0005433851 0.0027170533 -0.0043151364 0.0032984894 0.0002481281 0.006689035 0.0000000000 5.419480e-03 0.063730261 0.0027446470
0.0104678646 -0.0137705283 -0.0008208684 -0.020775088 -0.0059674755 -0.0030736619 -0.0025186697 0.0064308331 -0.0051020877 0.0000000000 0.0132128404 0.0048793414 0.0035207834 0.0107528595 -0.0188371313 0.0013638414 -0.004454346 0.0000000000 6.464827e-03 -0.037062067 -0.0025327734
0.0029244587 -0.0022210401 -0.0041144014 -0.021215773 0.0091660021 0.0063930222 -0.0019417186 0.0021345214 0.0177444492 0.0034681669 0.0067829424 0.0047562684 0.0171015572 0.0039494294 0.0066890351 -0.0197704371 0.006674154 0.0010912616 -9.604556e-03 0.014764620 0.0039488259

6 Desempenho Histórico Normalizado

Interpretação: O gráfico mostra que a maioria das ações seguiu a tendência do IBOVESPA, porém com diferentes magnitudes de retorno. Alguns ativos, como Americanas e Magazine Luiza, apresentaram desempenho significativamente inferior, enquanto outros como PRIO e Petrobras superaram o mercado.

7 Retorno Acumulado

ativos <- colnames(returns)

cores <- rep("gray70", length(ativos))
cores[ativos == "IBOV"] <- "black"

larg <- rep(1, length(ativos))
larg[ativos == "IBOV"] <- 3

chart.CumReturns(
  returns,
  main = "Retorno Acumulado – Ativos vs Ibovespa",
  legend.loc = "right",
  colorset = cores,
  lwd = larg
)

8 Desempenho historico do retorno das ações

8.1 Top 5 Ativos com melhor desempenho historico

vol <- apply(returns,2,sd)

top5 <- names(sort(vol, decreasing=TRUE))[1:5]

sel <- c(top5,"IBOV")

chart.CumReturns(
  returns[,sel],
  main="Top 5 Volatilidade w IBOV",
  legend.loc="topleft")

cores <- rep("gray70", length(sel))
cores[length(sel)] <- "black"

 chart.CumReturns(
  returns[, sel],
  colorset = cores,
  lwd = c(rep(1, length(sel)-1), 3),
  main = "Top Ativos X IBOV ",
  legend.loc = "topleft"
)

9 Correlação entre os Ativos

cor_mat <- cor(returns, use="complete.obs")

heatmap(
  cor_mat,
  Rowv = NA,
  Colv = NA,
  col = colorRampPalette(c("darkgrey","white","black"))(100),
  scale = "none",
  margins = c(7,7),
  main = "Mapa de Calor – Correlação dos Retornos"
)

Interpretação: A matriz de correlação revela que bancos (Itaú, Bradesco, BB) têm alta correlação entre si (>0.8), indicando que se movem de forma similar. Ativos de setores diferentes (ex: Equatorial e Magazine Luiza) têm baixa correlação, o que é benéfico para diversificação.

a <- cor(returns)
kable(a, caption = "Correlação entre os Ativos")
Correlação entre os Ativos
PETR4.SA.Adjusted VALE3.SA.Adjusted WEGE3.SA.Adjusted AMER3.SA.Adjusted BBAS3.SA.Adjusted ITUB4.SA.Adjusted SUZB3.SA.Adjusted KLBN11.SA.Adjusted ALPA4.SA.Adjusted EQTL3.SA.Adjusted PRIO3.SA.Adjusted BBDC4.SA.Adjusted PSSA3.SA.Adjusted MGLU3.SA.Adjusted GOAU4.SA.Adjusted JBSS32.SA.Adjusted GMAT3.SA.Adjusted BNBR3.SA.Adjusted MELI34.SA.Adjusted GUAR3.SA.Adjusted IBOV
PETR4.SA.Adjusted 1.0000000 -0.0967427 0.0743128 0.1576026 0.3239307 0.2721494 -0.0325864 -0.0629308 0.0474522 0.2195284 0.5054831 0.2713966 0.0341586 0.2253170 0.0679095 -0.0686136 0.1857183 0.0174229 -0.0084664 0.2308782 0.4331673
VALE3.SA.Adjusted -0.0967427 1.0000000 0.0416399 0.0880261 0.1321779 0.1467514 0.1617399 0.2621462 0.0222569 0.1533244 0.0300913 0.1292062 0.0776599 0.1058870 0.5088841 0.1578953 0.1326039 -0.0635771 -0.0421373 0.0753031 0.3207158
WEGE3.SA.Adjusted 0.0743128 0.0416399 1.0000000 -0.0828506 0.1790566 0.1375681 0.1099248 0.1515041 0.1300758 0.1263897 0.1759467 0.1348105 0.1136775 0.0085810 -0.0057858 0.0866622 0.1704609 0.0117765 0.0420823 0.1607876 0.2138512
AMER3.SA.Adjusted 0.1576026 0.0880261 -0.0828506 1.0000000 0.1316073 0.1487434 0.0044033 0.1061886 0.1111968 0.1670858 0.1634812 0.1104010 0.0518963 0.3366718 0.1579803 -0.0966162 0.2276518 0.0762620 0.2538018 0.1707118 0.2544713
BBAS3.SA.Adjusted 0.3239307 0.1321779 0.1790566 0.1316073 1.0000000 0.5694184 0.0071472 0.1624060 0.2258410 0.5064494 0.2694358 0.4694035 0.1915518 0.3233369 0.3079012 0.0928930 0.4648608 0.0616512 0.1424078 0.3978594 0.6541962
ITUB4.SA.Adjusted 0.2721494 0.1467514 0.1375681 0.1487434 0.5694184 1.0000000 0.0755485 0.1743697 0.3456651 0.7362282 0.1369635 0.7626922 0.3982393 0.4611089 0.3321721 -0.0134767 0.5450913 0.0520501 0.0613327 0.4771272 0.8450195
SUZB3.SA.Adjusted -0.0325864 0.1617399 0.1099248 0.0044033 0.0071472 0.0755485 1.0000000 0.6299613 0.0360333 0.0967728 0.0737305 -0.0540470 0.0056917 0.0095244 0.1727123 0.1597744 0.0479921 0.0225209 0.0477944 0.1927192 0.1046948
KLBN11.SA.Adjusted -0.0629308 0.2621462 0.1515041 0.1061886 0.1624060 0.1743697 0.6299613 1.0000000 0.1179192 0.1906165 0.0719198 0.1276955 0.1736373 0.1351404 0.3028811 -0.0072631 0.1913500 0.0524621 -0.0034214 0.2093206 0.2799744
ALPA4.SA.Adjusted 0.0474522 0.0222569 0.1300758 0.1111968 0.2258410 0.3456651 0.0360333 0.1179192 1.0000000 0.4700603 0.0406946 0.4070650 0.2957201 0.2975484 0.2407468 -0.0524344 0.3645991 0.0546299 0.0481435 0.4370394 0.4524292
EQTL3.SA.Adjusted 0.2195284 0.1533244 0.1263897 0.1670858 0.5064494 0.7362282 0.0967728 0.1906165 0.4700603 1.0000000 0.1985770 0.7180674 0.3692871 0.4522104 0.3016968 -0.0341981 0.5668901 0.0779936 0.0502447 0.5257970 0.8332379
PRIO3.SA.Adjusted 0.5054831 0.0300913 0.1759467 0.1634812 0.2694358 0.1369635 0.0737305 0.0719198 0.0406946 0.1985770 1.0000000 0.0520750 0.0431278 0.0885061 0.0980459 -0.0980102 0.1388505 0.0414739 0.0304248 0.0038073 0.2737770
BBDC4.SA.Adjusted 0.2713966 0.1292062 0.1348105 0.1104010 0.4694035 0.7626922 -0.0540470 0.1276955 0.4070650 0.7180674 0.0520750 1.0000000 0.3335868 0.4281725 0.3497237 -0.0412366 0.5465943 -0.0129958 0.0389837 0.4523493 0.7982733
PSSA3.SA.Adjusted 0.0341586 0.0776599 0.1136775 0.0518963 0.1915518 0.3982393 0.0056917 0.1736373 0.2957201 0.3692871 0.0431278 0.3335868 1.0000000 0.1456582 0.1778780 0.1178767 0.2729581 0.0679508 0.0384598 0.2989638 0.4100646
MGLU3.SA.Adjusted 0.2253170 0.1058870 0.0085810 0.3366718 0.3233369 0.4611089 0.0095244 0.1351404 0.2975484 0.4522104 0.0885061 0.4281725 0.1456582 1.0000000 0.2391624 0.0702643 0.3823719 0.0517220 0.2398497 0.3559728 0.5794445
GOAU4.SA.Adjusted 0.0679095 0.5088841 -0.0057858 0.1579803 0.3079012 0.3321721 0.1727123 0.3028811 0.2407468 0.3016968 0.0980459 0.3497237 0.1778780 0.2391624 1.0000000 0.0102291 0.2403868 -0.0032444 -0.0083933 0.2773868 0.4673894
JBSS32.SA.Adjusted -0.0686136 0.1578953 0.0866622 -0.0966162 0.0928930 -0.0134767 0.1597744 -0.0072631 -0.0524344 -0.0341981 -0.0980102 -0.0412366 0.1178767 0.0702643 0.0102291 1.0000000 0.0000651 -0.0973081 0.0225468 -0.0327023 0.0195743
GMAT3.SA.Adjusted 0.1857183 0.1326039 0.1704609 0.2276518 0.4648608 0.5450913 0.0479921 0.1913500 0.3645991 0.5668901 0.1388505 0.5465943 0.2729581 0.3823719 0.2403868 0.0000651 1.0000000 0.0314845 0.0962197 0.4562226 0.6473867
BNBR3.SA.Adjusted 0.0174229 -0.0635771 0.0117765 0.0762620 0.0616512 0.0520501 0.0225209 0.0524621 0.0546299 0.0779936 0.0414739 -0.0129958 0.0679508 0.0517220 -0.0032444 -0.0973081 0.0314845 1.0000000 0.1694613 0.0178654 0.0493863
MELI34.SA.Adjusted -0.0084664 -0.0421373 0.0420823 0.2538018 0.1424078 0.0613327 0.0477944 -0.0034214 0.0481435 0.0502447 0.0304248 0.0389837 0.0384598 0.2398497 -0.0083933 0.0225468 0.0962197 0.1694613 1.0000000 0.0633358 0.0655431
GUAR3.SA.Adjusted 0.2308782 0.0753031 0.1607876 0.1707118 0.3978594 0.4771272 0.1927192 0.2093206 0.4370394 0.5257970 0.0038073 0.4523493 0.2989638 0.3559728 0.2773868 -0.0327023 0.4562226 0.0178654 0.0633358 1.0000000 0.5931772
IBOV 0.4331673 0.3207158 0.2138512 0.2544713 0.6541962 0.8450195 0.1046948 0.2799744 0.4524292 0.8332379 0.2737770 0.7982733 0.4100646 0.5794445 0.4673894 0.0195743 0.6473867 0.0493863 0.0655431 0.5931772 1.0000000

10 Distribuição dos Retornos dos Ativos

ativos <- setdiff(colnames(returns), "IBOV")

chart.Histogram(
  returns[, ativos],
  methods = c("add.density", "add.normal"),
  layout = c(5, 4),
  main = "Distribuição dos Retornos Log"
)

Interpretação Os ativos apresentam uma certa normalidade de retornos frente o IBOVESPA, com uma certa tendência de assimetria a direita da distribuição dos retornos.

11 Boxplot para verificação de retornos Outliers

library(xts)
library(tidyverse)

ativos <- setdiff(colnames(returns), "IBOV")

# xts -> formato longo
df_long <- returns[, ativos] |>
  fortify.zoo() |>
  pivot_longer(-Index, names_to = "Ativo", values_to = "Retorno") |>
  drop_na()

# ordenar por risco (desvio padrão)
ordem <- df_long |>
  group_by(Ativo) |>
  summarise(risco = sd(Retorno)) |>
  arrange(risco) |>
  pull(Ativo)

df_long$Ativo <- factor(df_long$Ativo, levels = ordem)

# gráfico
ggplot(df_long, aes(x = Ativo, y = Retorno, fill = Ativo)) +
  geom_boxplot(
    alpha = 0.85,
    outlier.color = "darkgrey",
    outlier.alpha = 0.4,
    width = 0.65
  ) +
  geom_hline(yintercept = 0, linetype = "dashed") +
  coord_flip() +
  scale_y_continuous(labels = scales::percent_format()) +
  labs(
    title = "Distribuição dos Retornos Logarítmicos por Ativo",
    subtitle = "Boxplot ordenado por volatilidade (risco)",
    x = "",
    y = "Retorno diário"
  ) +
  theme_minimal(base_size = 12) +
  theme(
    legend.position = "none",
    plot.title = element_text(face = "bold")
  )

12 Exposição das Empresas ao Risco Sistématico - Beta

Realizar o calculo do beta das empresas permite identificar a exposição da empresa frente as variáções sistematicas de mercado se comparado com o índice de referência, nesse caso, o Ibovespa (IBOV).

O metodo de calculo foi desenvolvido por meio de uma regressão linear OLS (Simple Ordinare Squareds) - Mínimos quadrados Ordinarios - para o retorno de cada uma das empresas versus as variações no retorno do Ibovespa. O modelo aplicado para o cálculo se expressa da seguinte maneira:

\[R_{i}= \chi_{i}\;\alpha_{}\;+\;\beta_{0}\;+\epsilon_{i}\]

Onde:

\(R_{i}\) é o retorno do ativo \(i\);

\(\chi_{i}\) é o valor da variável explicativa - O Ibovespa;

\(\alpha\) é o coeficiênte angular da reta de regressão - Alfa de Jensen;

\(\beta_{0}\) é o valor do intercepto - coeficiênte linear - Exepressa o risco sistemático;

\(\epsilon_{i}\) é o resíduo- sendo uma constante o valor de beta tmabém expressa o erro;

13 Resultado do Betas das Empresas - CAPM

library(tidyverse)
library(broom)
library(knitr)

# separar benchmark
ibov <- returns[, "IBOV"]

ativos <- setdiff(colnames(returns), "IBOV")

# regressões CAPM
beta_tbl <- map_dfr(ativos, function(tk){

  model <- lm(returns[, tk] ~ ibov)

  tibble(
    Ativo = tk,
    Alpha = coef(model)[1],
    Beta  = coef(model)[2],
    R2    = summary(model)$r.squared
  )
})

beta_tbl <- beta_tbl |>
  mutate(across(where(is.numeric), round, 4)) |>
  arrange(desc(Beta))

kable(beta_tbl, caption = "Betas estimados pelo CAPM (Retornos log diários)")
Betas estimados pelo CAPM (Retornos log diários)
Ativo Alpha Beta R2
MGLU3.SA.Adjusted -0.0028 2.3126 0.3358
GUAR3.SA.Adjusted 0.0003 2.2170 0.3519
GMAT3.SA.Adjusted -0.0055 1.4788 0.4191
BBAS3.SA.Adjusted -0.0014 1.2979 0.4280
EQTL3.SA.Adjusted -0.0008 1.2918 0.6943
BBDC4.SA.Adjusted -0.0001 1.2754 0.6372
ITUB4.SA.Adjusted -0.0001 1.1734 0.7141
AMER3.SA.Adjusted -0.0020 1.1220 0.0648
ALPA4.SA.Adjusted 0.0017 1.1120 0.2047
GOAU4.SA.Adjusted 0.0008 0.7540 0.2185
PSSA3.SA.Adjusted -0.0011 0.6892 0.1682
PETR4.SA.Adjusted -0.0002 0.6250 0.1876
PRIO3.SA.Adjusted -0.0008 0.4721 0.0750
VALE3.SA.Adjusted 0.0022 0.4429 0.1029
WEGE3.SA.Adjusted 0.0008 0.4144 0.0457
KLBN11.SA.Adjusted 0.0002 0.3983 0.0784
MELI34.SA.Adjusted -0.0015 0.1590 0.0043
SUZB3.SA.Adjusted -0.0003 0.1523 0.0110
BNBR3.SA.Adjusted 0.0012 0.0983 0.0024
JBSS32.SA.Adjusted 0.0002 0.0419 0.0004

14 Estatística descritiva das ações das empresas

library(tidyverse)
library(moments)
library(knitr)

stats_tbl <- map_dfr(colnames(returns), function(tk){

  x <- returns[, tk]

  tibble(
    Ativo     = tk,
    Media     = mean(x),
    Mediana   = median(x),
    SD        = sd(x),
    Variancia = var(x),
    Max       = max(x),
    Min       = min(x),
    Amplitude = max(x) - min(x),
    Q1        = quantile(x, 0.25),
    Q3        = quantile(x, 0.75),
    Skewness  = skewness(x),
    Kurtosis  = kurtosis(x)
  )
})

stats_tbl <- stats_tbl |>
  mutate(across(where(is.numeric), round, 5)) |>
  arrange(desc(SD))

kable(stats_tbl, caption = "Estatísticas Descritivas dos Retornos Logarítmicos")
Estatísticas Descritivas dos Retornos Logarítmicos
Ativo Media Mediana SD Variancia Max Min Amplitude Q1 Q3 Skewness Kurtosis
AMER3.SA.Adjusted -0.00070 0.00000 0.03903 0.00152 0.13160 -0.09824 0.22984 -0.02078 0.02066 0.21529 3.87134
MGLU3.SA.Adjusted -0.00008 0.00112 0.03533 0.00125 0.08794 -0.10298 0.19092 -0.01700 0.02071 -0.22628 3.48047
GUAR3.SA.Adjusted 0.00295 0.00369 0.03309 0.00109 0.12734 -0.14212 0.26945 -0.01463 0.01980 -0.21180 6.36064
ALPA4.SA.Adjusted 0.00303 0.00194 0.02176 0.00047 0.10384 -0.08634 0.19017 -0.00847 0.01391 0.45833 8.01663
MELI34.SA.Adjusted -0.00130 -0.00094 0.02147 0.00046 0.05554 -0.09421 0.14975 -0.01246 0.01078 -0.84899 5.68288
GMAT3.SA.Adjusted -0.00372 -0.00407 0.02022 0.00041 0.03899 -0.10821 0.14720 -0.01305 0.00789 -1.30706 7.89566
JBSS32.SA.Adjusted 0.00026 -0.00130 0.01895 0.00036 0.05372 -0.06320 0.11692 -0.01211 0.01219 0.14586 3.86023
BNBR3.SA.Adjusted 0.00127 0.00000 0.01761 0.00031 0.05108 -0.09115 0.14223 0.00000 0.00309 -1.55697 12.22792
BBAS3.SA.Adjusted 0.00016 0.00093 0.01756 0.00031 0.04031 -0.07333 0.11365 -0.00791 0.01131 -1.07227 6.63754
WEGE3.SA.Adjusted 0.00129 0.00140 0.01715 0.00029 0.04678 -0.08350 0.13027 -0.00791 0.00915 -0.62021 6.97381
PRIO3.SA.Adjusted -0.00019 -0.00023 0.01527 0.00023 0.05462 -0.03986 0.09448 -0.01024 0.00936 0.34330 3.82292
PSSA3.SA.Adjusted -0.00033 0.00088 0.01488 0.00022 0.03615 -0.07944 0.11559 -0.00744 0.00992 -1.29457 7.99421
GOAU4.SA.Adjusted 0.00170 0.00109 0.01428 0.00020 0.03965 -0.04140 0.08106 -0.00647 0.01045 -0.17427 3.65142
BBDC4.SA.Adjusted 0.00143 0.00169 0.01414 0.00020 0.03414 -0.06153 0.09567 -0.00773 0.00976 -0.61677 5.36095
EQTL3.SA.Adjusted 0.00069 0.00000 0.01372 0.00019 0.03614 -0.04995 0.08610 -0.00716 0.00967 -0.36111 3.96051
SUZB3.SA.Adjusted -0.00010 -0.00157 0.01287 0.00017 0.05585 -0.04351 0.09936 -0.00685 0.00584 0.73648 6.55141
PETR4.SA.Adjusted 0.00056 0.00225 0.01277 0.00016 0.03704 -0.06345 0.10049 -0.00720 0.00644 -0.78769 7.29998
KLBN11.SA.Adjusted 0.00068 0.00054 0.01260 0.00016 0.03082 -0.03027 0.06110 -0.00696 0.00850 0.03379 2.96893
ITUB4.SA.Adjusted 0.00130 0.00188 0.01229 0.00015 0.02766 -0.04733 0.07499 -0.00596 0.00817 -0.55790 4.17328
VALE3.SA.Adjusted 0.00269 0.00173 0.01222 0.00015 0.03571 -0.04600 0.08171 -0.00307 0.00872 -0.13598 4.61967
IBOV 0.00118 0.00135 0.00885 0.00008 0.02538 -0.04405 0.06943 -0.00308 0.00587 -0.97855 7.31801

15 Simulação de Uma carteira de Três Ativos

library(tidyverse)
library(knitr)

# remover benchmark
assets <- setdiff(colnames(returns), "IBOV")

# combinações de 3 ativos
comb <- combn(assets, 3)

# estatísticas
mu    <- colMeans(returns[, assets])
Sigma <- cov(returns[, assets])

w <- rep(1/3, 3)

# anualização (252 dias úteis)
annual_factor <- 252

# cálculo vetorizado
portfolios <- map_dfr(1:ncol(comb), function(i){

  a <- comb[, i]

  ret  <- sum(mu[a] * w) * annual_factor
  risk <- sqrt(t(w) %*% Sigma[a,a] %*% w) * sqrt(annual_factor)

  tibble(
    Ativos  = paste(a, collapse = ", "),
    Retorno = as.numeric(ret),
    Risco   = as.numeric(risk),
    Sharpe  = as.numeric(ret/risk)
  )
})

# ordenar
portfolios <- portfolios |> arrange(desc(Sharpe))

best_port <- portfolios |> slice(1)

kable(head(portfolios, 10), digits = 4,
      caption = "Top 10 carteiras por Sharpe Ratio")
Top 10 carteiras por Sharpe Ratio
Ativos Retorno Risco Sharpe
VALE3.SA.Adjusted, ALPA4.SA.Adjusted, BNBR3.SA.Adjusted 0.5872 0.1639 3.5827
PETR4.SA.Adjusted, VALE3.SA.Adjusted, ALPA4.SA.Adjusted 0.5271 0.1491 3.5353
VALE3.SA.Adjusted, ITUB4.SA.Adjusted, ALPA4.SA.Adjusted 0.5897 0.1686 3.4982
VALE3.SA.Adjusted, ALPA4.SA.Adjusted, GOAU4.SA.Adjusted 0.6232 0.1807 3.4491
VALE3.SA.Adjusted, WEGE3.SA.Adjusted, ALPA4.SA.Adjusted 0.5890 0.1709 3.4457
VALE3.SA.Adjusted, ALPA4.SA.Adjusted, BBDC4.SA.Adjusted 0.6003 0.1779 3.3746
VALE3.SA.Adjusted, KLBN11.SA.Adjusted, ALPA4.SA.Adjusted 0.5375 0.1621 3.3156
VALE3.SA.Adjusted, BBDC4.SA.Adjusted, BNBR3.SA.Adjusted 0.4526 0.1370 3.3035
VALE3.SA.Adjusted, ITUB4.SA.Adjusted, BNBR3.SA.Adjusted 0.4421 0.1349 3.2768
VALE3.SA.Adjusted, GOAU4.SA.Adjusted, BNBR3.SA.Adjusted 0.4756 0.1508 3.1536
kable(best_port, digits = 4,
      caption = "Carteira Ótima (Maior Sharpe)")
Carteira Ótima (Maior Sharpe)
Ativos Retorno Risco Sharpe
VALE3.SA.Adjusted, ALPA4.SA.Adjusted, BNBR3.SA.Adjusted 0.5872 0.1639 3.5827

15.1 Metodologia do Calculo do Risco de carteiras - MW

O retono esperado de uma carteira é calculado através da média ponderada do retorno de cada um dos ativos pelo respectivo peso ou participação na carteira. No entanto, o risco de uma carteira não é calculado através da media ponderada dos desvios individuais dos ativos.

Para o calculo do risco de uma carteira formada por 2 ou n ativos devemos considerar a correlação ou covariância entre sí, de modo que ao considerarmos a correlação entre os ativos podemos esperar uma diminuição do risco se comparado a média ponderada dos desvios individuais conforme a moderna teoria de Markowitzs.

Desse modo, o calculo do risco da carteiras foram calculados da seguinte maneira:

\[\sigma_p^2 = \sum_{i=1}^{n} w_i^2 \sigma_i^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} w_i \, w_j \, \rho_{ij} \, \sigma_i \, \sigma_j\]

onde:

\(w_i\) é o peso do ativo \(i\) na carteira, com \(\sum_{i=1}^{n} w_i = 1\);

\(\sigma_i^2\) é a variância do retorno do ativo \(i\);

\(\rho_{ij}\) é o coeficiente de correlação entre os retornos dos ativos \(i\) e \(j\);

\(\sigma_p^2\) é a variância do retorno da carteira.

16 Risco e Retorno das Carteiras

plot(portfolios$Risco, portfolios$Retorno,
     pch = 19,
     col = rgb(0,0,0,0.3),
     xlab = "Risco (vol anual)",
     ylab = "Retorno anual",
     main = "Carteiras Simuladas")

points(best_port$Risco, best_port$Retorno,
       col = "red", pch = 19, cex = 2)

text(best_port$Risco, best_port$Retorno,
     labels = "Ótima", pos = 4)

17 Fronteira Efieciente de Markowitz

library(PortfolioAnalytics)
library(PerformanceAnalytics)
library(ROI)
library(ROI.plugin.quadprog)

# remover benchmark corretamente
assets <- setdiff(colnames(returns), "IBOV")

R <- returns[, assets]

# especificação do portfólio
port <- portfolio.spec(assets = assets)

port <- add.constraint(port, type = "full_investment")
port <- add.constraint(port, type = "long_only")

port <- add.objective(port, type = "return", name = "mean")
port <- add.objective(port, type = "risk", name = "StdDev")

# otimização (mais pontos = fronteira suave)
opt <- optimize.portfolio(
  R,
  port,
  optimize_method = "random",
  search_size = 20000,
  trace = TRUE
)

# gráfico base (rápido)
chart.EfficientFrontier(opt,
                        match.col="StdDev",
                        type="l",
                        main="Fronteira Eficiente de Markowitz")

# pesos ótimos
weights_tbl <- data.frame(
  Ativo = names(opt$weights),
  Peso  = round(opt$weights,4)
)

knitr::kable(weights_tbl, caption="Pesos ótimos do portfólio")
Pesos ótimos do portfólio
Ativo Peso
PETR4.SA.Adjusted PETR4.SA.Adjusted 0.076
VALE3.SA.Adjusted VALE3.SA.Adjusted 0.242
WEGE3.SA.Adjusted WEGE3.SA.Adjusted 0.052
AMER3.SA.Adjusted AMER3.SA.Adjusted 0.010
BBAS3.SA.Adjusted BBAS3.SA.Adjusted 0.022
ITUB4.SA.Adjusted ITUB4.SA.Adjusted 0.018
SUZB3.SA.Adjusted SUZB3.SA.Adjusted 0.112
KLBN11.SA.Adjusted KLBN11.SA.Adjusted 0.010
ALPA4.SA.Adjusted ALPA4.SA.Adjusted 0.000
EQTL3.SA.Adjusted EQTL3.SA.Adjusted 0.038
PRIO3.SA.Adjusted PRIO3.SA.Adjusted 0.016
BBDC4.SA.Adjusted BBDC4.SA.Adjusted 0.042
PSSA3.SA.Adjusted PSSA3.SA.Adjusted 0.098
MGLU3.SA.Adjusted MGLU3.SA.Adjusted 0.000
GOAU4.SA.Adjusted GOAU4.SA.Adjusted 0.002
JBSS32.SA.Adjusted JBSS32.SA.Adjusted 0.108
GMAT3.SA.Adjusted GMAT3.SA.Adjusted 0.000
BNBR3.SA.Adjusted BNBR3.SA.Adjusted 0.128
MELI34.SA.Adjusted MELI34.SA.Adjusted 0.018
GUAR3.SA.Adjusted GUAR3.SA.Adjusted 0.008

18 Conclusões

  • Diversificação reduz volatilidade total

  • Betas evidenciam exposição ao mercado

  • Carteiras com utilities + bancos + commodities tendem melhor Sharpe

  • Fronteira eficiente demonstra alocação ótima de capital

19 Resultados das carteiras x perfis de investidores

# classificação
q <- quantile(portfolios$Risco, probs=c(.33,.66))

portfolios$Perfil <- cut(
  portfolios$Risco,
  breaks=c(-Inf,q[1],q[2],Inf),
  labels=c("Conservador","Moderado","Agressivo")
)

cols <- c("blue","orange","red")

plot(portfolios$Risco, portfolios$Retorno,
     col=cols[portfolios$Perfil],
     pch=19,
     xlab="Risco",
     ylab="Retorno",
     main="Perfis de Investidor")

points(best_port$Risco, best_port$Retorno,
       col="black", pch=19, cex=2)

legend("topleft",
       legend=levels(portfolios$Perfil),
       col=cols,
       pch=19)

20 Referências

  • NETO, Alexandre Assaf; LIMA, Fabiano Guasti. Curso de administração financeira. Atlas, 2009.

  • ASSAF NETO, Alexandre. Mercado financeiro. 2000.


  1. Assaf e Lima (2009) recomendam o metodo do calculo do Retorno logarítmo para análise de desempenho dessas séries temporais. O metodo permite uma suavização exponencial.↩︎