Outlier
detect_outliers <- function(data) {
cat("\n=== DETEKSI OUTLIER ===\n\n")
outlier_report <- list()
for(var in names(data)[sapply(data, is.numeric)]) {
cat("Analisis outlier untuk variabel:", var, "\n")
# Statistik deskriptif
stats <- summary(data[[var]])
iqr_val <- IQR(data[[var]], na.rm = TRUE)
q1 <- quantile(data[[var]], 0.25, na.rm = TRUE)
q3 <- quantile(data[[var]], 0.75, na.rm = TRUE)
lower_bound <- q1 - 1.5 * iqr_val
upper_bound <- q3 + 1.5 * iqr_val
# Deteksi outlier dengan metode IQR
outliers_iqr <- data[[var]][data[[var]] < lower_bound | data[[var]] > upper_bound]
# Deteksi outlier dengan metode Z-score
z_scores <- scale(data[[var]])
outliers_z <- data[[var]][abs(z_scores) > 3]
# Deteksi outlier dengan metode Grubbs (uji statistik)
if(length(na.omit(data[[var]])) > 6) {
tryCatch({
grubbs_test <- grubbs.test(na.omit(data[[var]]))
grubbs_outlier <- ifelse(grubbs_test$p.value < 0.05, "Terdeteksi", "Tidak terdeteksi")
}, error = function(e) {
grubbs_outlier <- "Tidak dapat dihitung"
})
} else {
grubbs_outlier <- "Data tidak cukup"
}
# Ringkasan
outlier_report[[var]] <- list(
n_outliers_iqr = length(outliers_iqr),
n_outliers_z = length(outliers_z),
grubbs_result = grubbs_outlier,
lower_bound = lower_bound,
upper_bound = upper_bound,
outlier_values = unique(round(outliers_iqr, 2))
)
cat(" - Outlier (IQR method):", length(outliers_iqr), "\n")
cat(" - Outlier (Z-score > 3):", length(outliers_z), "\n")
cat(" - Uji Grubbs:", grubbs_outlier, "\n")
cat(" - Batas bawah:", round(lower_bound, 2), "\n")
cat(" - Batas atas:", round(upper_bound, 2), "\n")
if(length(outliers_iqr) > 0) {
cat(" - Nilai outlier:", paste(head(unique(round(outliers_iqr, 2)), 5), collapse = ", "), "\n")
}
cat("\n")
}
return(outlier_report)
}
# Deteksi outlier
outlier_analysis <- detect_outliers(data)
##
## === DETEKSI OUTLIER ===
##
## Analisis outlier untuk variabel: Age
## - Outlier (IQR method): 0
## - Outlier (Z-score > 3): 0
## - Uji Grubbs: Tidak terdeteksi
## - Batas bawah: -12.88
## - Batas atas: 88.12
##
## Analisis outlier untuk variabel: Annual_Premium
## - Outlier (IQR method): 26
## - Outlier (Z-score > 3): 5
## - Uji Grubbs: Terdeteksi
## - Batas bawah: 1704.5
## - Batas atas: 62266.5
## - Nilai outlier: 81192, 100278, 63273, 70452, 71918
# Visual
visualize_outliers <- function(data) {
numeric_vars <- names(data)[sapply(data, is.numeric)]
# Boxplot untuk setiap variabel numerik
par(mfrow = c(2, 3))
for(var in numeric_vars[1:min(6, length(numeric_vars))]) {
boxplot(data[[var]], main = var, col = "lightblue",
ylab = "Nilai", outline = TRUE)
grid()
}
par(mfrow = c(1, 1))
# Histogram dengan overlay outlier
for(var in numeric_vars[1:min(3, length(numeric_vars))]) {
# Hitung batas outlier
q1 <- quantile(data[[var]], 0.25, na.rm = TRUE)
q3 <- quantile(data[[var]], 0.75, na.rm = TRUE)
iqr_val <- IQR(data[[var]], na.rm = TRUE)
lower_bound <- q1 - 1.5 * iqr_val
upper_bound <- q3 + 1.5 * iqr_val
# Identifikasi outlier
is_outlier <- data[[var]] < lower_bound | data[[var]] > upper_bound
# Plot histogram
hist_data <- ggplot(data.frame(value = data[[var]]), aes(x = value)) +
geom_histogram(aes(y = ..density..), bins = 30, fill = "lightblue", alpha = 0.7) +
geom_density(color = "darkblue", linewidth = 1) +
geom_vline(xintercept = c(lower_bound, upper_bound),
color = "red", linetype = "dashed", linewidth = 1) +
labs(title = paste("Distribusi dan Outlier:", var),
x = var, y = "Density") +
theme_minimal() +
annotate("text", x = lower_bound, y = 0,
label = "Bawah", vjust = 2, color = "red") +
annotate("text", x = upper_bound, y = 0,
label = "Atas", vjust = 2, color = "red")
print(hist_data)
}
# Scatter plot matrix untuk melihat outlier multivariat
if(length(numeric_vars) >= 3) {
pairs(data[, numeric_vars[1:min(4, length(numeric_vars))]],
main = "Scatter Plot Matrix untuk Deteksi Outlier",
pch = 19, col = alpha("blue", 0.6))
}
}
# Jalankan visualisasi
visualize_outliers(data)

## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once per session.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.


Analisis Regresi
# Korelasi
cat("\nKORELASI:\n")
##
## KORELASI:
correlation <- cor(data$Age, data$Annual_Premium)
cat("Koefisien Korelasi (r) =", round(correlation, 4), "\n")
## Koefisien Korelasi (r) = 0.1388
if (abs(correlation) >= 0.9) {
cat("Interpretasi: Korelasi sangat kuat\n")
} else if (abs(correlation) >= 0.7) {
cat("Interpretasi: Korelasi kuat\n")
} else if (abs(correlation) >= 0.5) {
cat("Interpretasi: Korelasi sedang\n")
} else if (abs(correlation) >= 0.3) {
cat("Interpretasi: Korelasi lemah\n")
} else {
cat("Interpretasi: Korelasi sangat lemah/tidak ada\n")
}
## Interpretasi: Korelasi sangat lemah/tidak ada
# Visual Data
cat("\n\n=== VISUALISASI DATA ===\n")
##
##
## === VISUALISASI DATA ===
# Scatter plot
par(mfrow = c(1, 2)) # Dua plot berdampingan
# Plot 1: Scatter plot tanpa garis regresi
plot(data$Age, data$Annual_Premium,
main = "Scatter Plot: Age vs Annual Premium",
xlab = "Age (X)",
ylab = "Annual Premium (Y)",
pch = 19, col = "blue", cex = 1.5)
grid()
# Plot 2: Scatter plot dengan garis regresi
plot(data$Age, data$Annual_Premium,
main = "Data dengan Garis Regresi",
xlab = "Age (X)",
ylab = "Annual Premium (Y)",
pch = 19, col = "blue", cex = 1.5)
grid()

# Kembalikan ke satu plot per window
par(mfrow = c(1, 1))
# Model regresi linear sederhana
model <- lm(Age ~ Annual_Premium, data = data)
# Persamaan regresi
cat("\nPERSAMAAN REGRESI LINEAR:\n")
##
## PERSAMAAN REGRESI LINEAR:
beta0 <- coef(model)[1]
beta1 <- coef(model)[2]
# Ringkasan model
cat("\nRINGKASAN MODEL:\n")
##
## RINGKASAN MODEL:
summary_model <- summary(model)
print(summary_model)
##
## Call:
## lm(formula = Age ~ Annual_Premium, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26.016 -14.305 -0.939 10.210 45.079
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.559e+01 1.043e+00 34.114 < 2e-16 ***
## Annual_Premium 1.339e-04 3.025e-05 4.427 1.06e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.63 on 998 degrees of freedom
## Multiple R-squared: 0.01926, Adjusted R-squared: 0.01827
## F-statistic: 19.59 on 1 and 998 DF, p-value: 1.063e-05
# Ekstrak komponen penting
cat("\nPERSAMAAN REGRESI:\n")
##
## PERSAMAAN REGRESI:
intercept <- coef(model)[1]
slope <- coef(model)[2]
cat("Persamaan Regresi: Y =", round(intercept, 4), "+", round(slope, 4), "* X\n")
## Persamaan Regresi: Y = 35.5867 + 1e-04 * X
# Koefisien determinasi
cat("\nKOEFISIEN DETERMINASI (R-squared):\n")
##
## KOEFISIEN DETERMINASI (R-squared):
r_squared <- summary_model$r.squared
cat("R-squared =", round(r_squared, 4), "\n")
## R-squared = 0.0193
# ASUMSI REGRESI LINEAR
# ------------------------
cat("\n\n=== UJI ASUMSI REGRESI LINEAR ===\n")
##
##
## === UJI ASUMSI REGRESI LINEAR ===
# Normalitas Residual
cat("\n1. UJI NORMALITAS RESIDUAL (Shapiro-Wilk):\n")
##
## 1. UJI NORMALITAS RESIDUAL (Shapiro-Wilk):
residuals <- resid(model)
shapiro_test <- shapiro.test(residuals)
cat("Statistik Uji W =", round(shapiro_test$statistic, 4), "\n")
## Statistik Uji W = 0.9339
cat("p-value =", round(shapiro_test$p.value, 4), "\n")
## p-value = 0
if (shapiro_test$p.value > 0.05) {
cat("Keputusan: Residual berdistribusi normal (p > 0.05)\n")
} else {
cat("Keputusan: Residual tidak berdistribusi normal (p < 0.05)\n")
}
## Keputusan: Residual tidak berdistribusi normal (p < 0.05)
# Plot normalitas residual
par(mfrow = c(1, 2))
qqnorm(residuals, main = "Q-Q Plot Residual")
qqline(residuals, col = "red")
hist(residuals, main = "Histogram Residual",
xlab = "Residual", col = "lightblue", border = "black")

# Homoskedastisitas (Uji Breusch-Pagan)
cat("\n2. UJI HOMOSKEDASTISITAS (Breusch-Pagan):\n")
##
## 2. UJI HOMOSKEDASTISITAS (Breusch-Pagan):
if (!require(lmtest)) {
install.packages("lmtest")
library(lmtest)
}
bp_test <- bptest(model)
cat("Statistik Uji LM =", round(bp_test$statistic, 4), "\n")
## Statistik Uji LM = 9.2047
cat("p-value =", round(bp_test$p.value, 4), "\n")
## p-value = 0.0024
if (bp_test$p.value > 0.05) {
cat("Keputusan: Varian residual homogen (homoskedastisitas terpenuhi)\n")
} else {
cat("Keputusan: Varian residual tidak homogen (ada heteroskedastisitas)\n")
}
## Keputusan: Varian residual tidak homogen (ada heteroskedastisitas)
# Plot residual vs fitted
par(mfrow = c(1, 2))
plot(fitted(model), residuals,
main = "Residual vs Fitted Values",
xlab = "Fitted Values", ylab = "Residuals",
pch = 19, col = "blue")
abline(h = 0, col = "red", lty = 2)
grid()
# Plot residual vs prediktor
plot(data$Age, residuals,
main = "Residual vs Prediktor (X)",
xlab = "Age", ylab = "Residuals",
pch = 19, col = "blue")
abline(h = 0, col = "red", lty = 2)
grid()

par(mfrow = c(1, 1))
# PENGUJIAN HIPOTESIS
# ----------------------
cat("\n\n=== PENGUJIAN HIPOTESIS ===\n")
##
##
## === PENGUJIAN HIPOTESIS ===
# Hipotesis untuk Koefisien Regresi (Slope)
cat("\n1. UJI HIPOTESIS UNTUK SLOPE (β1):\n")
##
## 1. UJI HIPOTESIS UNTUK SLOPE (β1):
cat(" Hipotesis Nol (H0): β1 = 0 (Tidak ada hubungan linear)\n")
## Hipotesis Nol (H0): β1 = 0 (Tidak ada hubungan linear)
cat(" Hipotesis Alternatif (H1): β1 ≠ 0 (Ada hubungan linear)\n")
## Hipotesis Alternatif (H1): β1 ≠ 0 (Ada hubungan linear)
# Dari output summary model
coef_table <- summary_model$coefficients
slope_p_value <- coef_table[2, 4]
cat("\n Hasil Uji:\n")
##
## Hasil Uji:
cat(" t-statistik =", round(coef_table[2, 3], 4), "\n")
## t-statistik = 4.4266
cat(" p-value =", round(slope_p_value, 6), "\n")
## p-value = 1.1e-05
alpha <- 0.05
cat(" Tingkat signifikansi (α) =", alpha, "\n")
## Tingkat signifikansi (α) = 0.05
if (slope_p_value < alpha) {
cat("\n KEPUTUSAN: Tolak H0\n")
cat(" KESIMPULAN: Ada bukti statistik yang cukup untuk menyatakan bahwa\n")
cat(" terdapat hubungan linear yang signifikan antara Age dan Annual Premium\n")
} else {
cat("\n KEPUTUSAN: Gagal tolak H0\n")
cat(" KESIMPULAN: Tidak ada bukti statistik yang cukup untuk menyatakan bahwa\n")
cat(" terdapat hubungan linear yang signifikan antara Age dan Annual Premium\n")
}
##
## KEPUTUSAN: Tolak H0
## KESIMPULAN: Ada bukti statistik yang cukup untuk menyatakan bahwa
## terdapat hubungan linear yang signifikan antara Age dan Annual Premium
# Interval Kepercayaan
cat("\n2. INTERVAL KEPERCAYAAN 95% UNTUK KOEFISIEN:\n")
##
## 2. INTERVAL KEPERCAYAAN 95% UNTUK KOEFISIEN:
conf_int <- confint(model, level = 0.95)
cat(" Intercept (β0): [", round(conf_int[1, 1], 4), ", ", round(conf_int[1, 2], 4), "]\n", sep = "")
## Intercept (β0): [33.5397, 37.6338]
cat(" Slope (β1): [", round(conf_int[2, 1], 4), ", ", round(conf_int[2, 2], 4), "]\n", sep = "")
## Slope (β1): [1e-04, 2e-04]