Goal: to predict the Youtube like count Click here for the data

.

Import Data

 youtube <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2021/2021-03-02/youtube.csv')
## Rows: 247 Columns: 25
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (10): brand, superbowl_ads_dot_com_url, youtube_url, id, kind, etag, ti...
## dbl   (7): year, view_count, like_count, dislike_count, favorite_count, comm...
## lgl   (7): funny, show_product_quickly, patriotic, celebrity, danger, animal...
## dttm  (1): published_at
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
skimr::skim(youtube)
Data summary
Name youtube
Number of rows 247
Number of columns 25
_______________________
Column type frequency:
character 10
logical 7
numeric 7
POSIXct 1
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
brand 0 1.00 3 9 0 10 0
superbowl_ads_dot_com_url 0 1.00 34 120 0 244 0
youtube_url 11 0.96 43 43 0 233 0
id 11 0.96 11 11 0 233 0
kind 16 0.94 13 13 0 1 0
etag 16 0.94 27 27 0 228 0
title 16 0.94 6 99 0 228 0
description 50 0.80 3 3527 0 194 0
thumbnail 129 0.48 48 48 0 118 0
channel_title 16 0.94 3 37 0 185 0

Variable type: logical

skim_variable n_missing complete_rate mean count
funny 0 1 0.69 TRU: 171, FAL: 76
show_product_quickly 0 1 0.68 TRU: 169, FAL: 78
patriotic 0 1 0.17 FAL: 206, TRU: 41
celebrity 0 1 0.29 FAL: 176, TRU: 71
danger 0 1 0.30 FAL: 172, TRU: 75
animals 0 1 0.37 FAL: 155, TRU: 92
use_sex 0 1 0.27 FAL: 181, TRU: 66

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1.00 2010.19 5.86 2000 2005 2010 2015.00 2020 ▇▇▇▇▆
view_count 16 0.94 1407556.46 11971111.01 10 6431 41379 170015.50 176373378 ▇▁▁▁▁
like_count 22 0.91 4146.03 23920.40 0 19 130 527.00 275362 ▇▁▁▁▁
dislike_count 22 0.91 833.54 6948.52 0 1 7 24.00 92990 ▇▁▁▁▁
favorite_count 16 0.94 0.00 0.00 0 0 0 0.00 0 ▁▁▇▁▁
comment_count 25 0.90 188.64 986.46 0 1 10 50.75 9190 ▇▁▁▁▁
category_id 16 0.94 19.32 8.00 1 17 23 24.00 29 ▃▁▂▆▇

Variable type: POSIXct

skim_variable n_missing complete_rate min max median n_unique
published_at 16 0.94 2006-02-06 10:02:36 2021-01-27 13:11:29 2013-01-31 09:13:55 227
data <- youtube %>%

  
  # Treat missing values
  select(-thumbnail, -description, -favorite_count, -comment_count, -published_at, -category_id, -superbowl_ads_dot_com_url, -youtube_url, -id ,-etag, -channel_title) %>% 
   na.omit() %>% 
  
  # log transform variables with pos-skewed distribution
  mutate(like_count = log(like_count))

Explore Data

Identify good predictors

like_count

data %>%
  ggplot(aes(like_count, view_count)) +
  scale_y_log10() +
  geom_point()

data %>% 
  ggplot(aes(like_count, as.factor(brand))) +
  geom_boxplot() 
## Warning: Removed 9 rows containing non-finite outside the scale range
## (`stat_boxplot()`).

title

data %>%  
  
  # tokenism title
  unnest_tokens(output = word, input = brand) %>%
  
  # calculate avg rent per word
  group_by(word) %>%
  summarise(like_count = mean(like_count), 
            n   = n()) %>%
  ungroup() %>%

filter(n > 10, !str_detect(word, "\\d")) %>%
  slice_max(order_by = like_count, n = 20) %>% 
  
  # plot

    ggplot(aes(like_count, fct_reorder(word, like_count))) +
  geom_point() +


  
  labs(y = "word in Title")

# step 1: prepare data
data_binarized_tbl <- data %>%

  select(-dislike_count, -title) %>%
binarize() 

data_binarized_tbl  %>% glimpse() 
## Rows: 225
## Columns: 36
## $ `year__-Inf_2005`                             <dbl> 0, 0, 0, 0, 1, 0, 0, 0, …
## $ year__2005_2010                               <dbl> 0, 0, 1, 0, 0, 0, 0, 0, …
## $ year__2010_2015                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, …
## $ year__2015_Inf                                <dbl> 1, 1, 0, 1, 0, 1, 1, 1, …
## $ brand__Bud_Light                              <dbl> 0, 1, 1, 0, 1, 0, 0, 0, …
## $ brand__Budweiser                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `brand__Coca-Cola`                            <dbl> 0, 0, 0, 0, 0, 0, 1, 0, …
## $ brand__Doritos                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `brand__E-Trade`                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, …
## $ brand__Hynudai                                <dbl> 0, 0, 0, 1, 0, 0, 0, 0, …
## $ brand__Kia                                    <dbl> 0, 0, 0, 0, 0, 0, 0, 1, …
## $ brand__NFL                                    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, …
## $ brand__Pepsi                                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, …
## $ brand__Toyota                                 <dbl> 1, 0, 0, 0, 0, 1, 0, 0, …
## $ funny__0                                      <dbl> 1, 0, 0, 1, 0, 0, 0, 1, …
## $ funny__1                                      <dbl> 0, 1, 1, 0, 1, 1, 1, 0, …
## $ show_product_quickly__0                       <dbl> 1, 0, 1, 0, 0, 0, 1, 1, …
## $ show_product_quickly__1                       <dbl> 0, 1, 0, 1, 1, 1, 0, 0, …
## $ patriotic__0                                  <dbl> 1, 1, 1, 1, 1, 1, 1, 1, …
## $ patriotic__1                                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, …
## $ celebrity__0                                  <dbl> 1, 0, 1, 1, 1, 0, 0, 0, …
## $ celebrity__1                                  <dbl> 0, 1, 0, 0, 0, 1, 1, 1, …
## $ danger__0                                     <dbl> 1, 0, 0, 1, 0, 0, 1, 1, …
## $ danger__1                                     <dbl> 0, 1, 1, 0, 1, 1, 0, 0, …
## $ animals__0                                    <dbl> 1, 1, 0, 1, 0, 0, 0, 1, …
## $ animals__1                                    <dbl> 0, 0, 1, 0, 1, 1, 1, 0, …
## $ use_sex__0                                    <dbl> 1, 1, 1, 1, 0, 1, 1, 1, …
## $ use_sex__1                                    <dbl> 0, 0, 0, 0, 1, 0, 0, 0, …
## $ `view_count__-Inf_6641`                       <dbl> 0, 0, 0, 1, 0, 0, 0, 0, …
## $ view_count__6641_43983                        <dbl> 0, 0, 0, 0, 1, 1, 0, 1, …
## $ view_count__43983_175482                      <dbl> 1, 1, 1, 0, 0, 0, 0, 0, …
## $ view_count__175482_Inf                        <dbl> 0, 0, 0, 0, 0, 0, 1, 0, …
## $ `like_count__-Inf_2.94443897916644`           <dbl> 0, 0, 0, 1, 0, 0, 0, 0, …
## $ like_count__2.94443897916644_4.86753445045558 <dbl> 0, 0, 1, 0, 1, 1, 0, 1, …
## $ like_count__4.86753445045558_6.26720054854136 <dbl> 0, 1, 0, 0, 0, 0, 0, 0, …
## $ like_count__6.26720054854136_Inf              <dbl> 1, 0, 0, 0, 0, 0, 1, 0, …
# step 2: Correlate
data_corr_tbl <- data_binarized_tbl %>%
  correlate(like_count__6.26720054854136_Inf )

data_corr_tbl
## # A tibble: 36 × 3
##    feature    bin                               correlation
##    <fct>      <chr>                                   <dbl>
##  1 like_count 6.26720054854136_Inf                    1    
##  2 view_count 175482_Inf                              0.715
##  3 like_count -Inf_2.94443897916644                  -0.339
##  4 view_count -Inf_6641                              -0.335
##  5 like_count 4.86753445045558_6.26720054854136      -0.331
##  6 like_count 2.94443897916644_4.86753445045558      -0.327
##  7 view_count 6641_43983                             -0.308
##  8 brand      Doritos                                 0.281
##  9 brand      NFL                                     0.250
## 10 brand      Bud_Light                              -0.212
## # ℹ 26 more rows
# step 3: 
data_corr_tbl %>%
  plot_correlation_funnel()
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## ℹ The deprecated feature was likely used in the correlationfunnel package.
##   Please report the issue at
##   <https://github.com/business-science/correlationfunnel/issues>.
## This warning is displayed once per session.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `size` argument of `element_rect()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## ℹ The deprecated feature was likely used in the correlationfunnel package.
##   Please report the issue at
##   <https://github.com/business-science/correlationfunnel/issues>.
## This warning is displayed once per session.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: ggrepel: 5 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Preprocess Data

Build Models

Evaluate Models

Make Predictions