Synopsis

This report analyzes NOAA storm data to find which weather events hurt people most and cost the most money. It looks at data from 1950 to 2011. Tornadoes hurt people the most. Floods cost the most money. The report has tables and charts to show the results.

Data Processing

# Load libraries
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)

# Read the data
# First check what files are available
file_list <- list.files()
print(file_list)
## [1] "activity.csv"                   "pa1.html"                      
## [3] "pa1.rmd"                        "repdata_data_StormData.csv.bz2"
## [5] "Reproducible Research"          "RStudio"                       
## [7] "storm_report.Rmd"               "storm_report1.Rmd"
# Try to find the correct file name
storm_data <- read.csv("repdata_data_StormData.csv.bz2")
# Look at the data
head(storm_data)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE  EVTYPE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL TORNADO
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL TORNADO
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL TORNADO
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL TORNADO
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL TORNADO
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL TORNADO
##   BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END COUNTYENDN
## 1         0                                               0         NA
## 2         0                                               0         NA
## 3         0                                               0         NA
## 4         0                                               0         NA
## 5         0                                               0         NA
## 6         0                                               0         NA
##   END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES INJURIES PROPDMG
## 1         0                      14.0   100 3   0          0       15    25.0
## 2         0                       2.0   150 2   0          0        0     2.5
## 3         0                       0.1   123 2   0          0        2    25.0
## 4         0                       0.0   100 2   0          0        2     2.5
## 5         0                       0.0   150 2   0          0        2     2.5
## 6         0                       1.5   177 2   0          0        6     2.5
##   PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES LATITUDE LONGITUDE
## 1          K       0                                         3040      8812
## 2          K       0                                         3042      8755
## 3          K       0                                         3340      8742
## 4          K       0                                         3458      8626
## 5          K       0                                         3412      8642
## 6          K       0                                         3450      8748
##   LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1       3051       8806              1
## 2          0          0              2
## 3          0          0              3
## 4          0          0              4
## 5          0          0              5
## 6          0          0              6
# Calculate total harm
harm <- storm_data %>%
  group_by(EVTYPE) %>%
  summarise(
    Fatalities = sum(FATALITIES, na.rm = TRUE),
    Injuries = sum(INJURIES, na.rm = TRUE),
    Total_Harm = sum(FATALITIES, na.rm = TRUE) + sum(INJURIES, na.rm = TRUE)
  ) %>%
  arrange(desc(Total_Harm))
## `summarise()` ungrouping output (override with `.groups` argument)
# Show top 10
top_harm <- head(harm, 10)
top_harm
## # A tibble: 10 x 4
##    EVTYPE            Fatalities Injuries Total_Harm
##    <chr>                  <dbl>    <dbl>      <dbl>
##  1 TORNADO                 5633    91346      96979
##  2 EXCESSIVE HEAT          1903     6525       8428
##  3 TSTM WIND                504     6957       7461
##  4 FLOOD                    470     6789       7259
##  5 LIGHTNING                816     5230       6046
##  6 HEAT                     937     2100       3037
##  7 FLASH FLOOD              978     1777       2755
##  8 ICE STORM                 89     1975       2064
##  9 THUNDERSTORM WIND        133     1488       1621
## 10 WINTER STORM             206     1321       1527
# Create plot
barplot(top_harm$Total_Harm, 
        names.arg = top_harm$EVTYPE,
        las = 2,
        col = "red",
        main = "Most Harmful Weather Events",
        ylab = "Total People Harmed")

# Calculate damage
storm_data$PROPDMG_NUM <- storm_data$PROPDMG * 
  ifelse(storm_data$PROPDMGEXP == "K", 1000,
         ifelse(storm_data$PROPDMGEXP == "M", 1000000,
                ifelse(storm_data$PROPDMGEXP == "B", 1000000000, 1)))

storm_data$CROPDMG_NUM <- storm_data$CROPDMG * 
  ifelse(storm_data$CROPDMGEXP == "K", 1000,
         ifelse(storm_data$PROPDMGEXP == "M", 1000000,
                ifelse(storm_data$PROPDMGEXP == "B", 1000000000, 1)))

storm_data$TOTAL_DAMAGE <- storm_data$PROPDMG_NUM + storm_data$CROPDMG_NUM

damage <- storm_data %>%
  group_by(EVTYPE) %>%
  summarise(Total_Damage = sum(TOTAL_DAMAGE, na.rm = TRUE) / 1000000000) %>%
  arrange(desc(Total_Damage))
## `summarise()` ungrouping output (override with `.groups` argument)
# Show top 10
top_damage <- head(damage, 10)
top_damage
## # A tibble: 10 x 2
##    EVTYPE                    Total_Damage
##    <chr>                            <dbl>
##  1 HURRICANE                        815. 
##  2 HURRICANE/TYPHOON                500. 
##  3 FLOOD                            180. 
##  4 TORNADO                           57.1
##  5 STORM SURGE                       43.3
##  6 FLASH FLOOD                       17.2
##  7 HAIL                              16.9
##  8 WILDFIRE                          11.4
##  9 RIVER FLOOD                       10.1
## 10 HURRICANE OPAL/HIGH WINDS         10.1
# Create plot
barplot(top_damage$Total_Damage,
        names.arg = top_damage$EVTYPE,
        las = 2,
        col = "blue",
        main = "Most Costly Weather Events",
        ylab = "Damage (Billions of Dollars)")