## [1] "Assumed this study would be challenging due to the overwhelming amout of sugar in the current US diet. The challenge was to try to get data here or abroad. The studies outside the states are a lot more difficult to procure. The studies in the states for sugar are limited to specific organ targets or animal, non-human models in most cases; or even a drastically reduced sample size."
##
## The downloaded binary packages are in
## /var/folders/rg/x_7b05fn3sj3v_jq8q367xzm0000gn/T//RtmprNDOTs/downloaded_packages
## age_range bmi a1c_status
## GSM1216753 65> 24.7 Non_Diabetic
## GSM1216755 31-50 23.9 Non_Diabetic
## [1] "Since we are utlizing RNA-seq data for this analyis, we use the appropriate tool: DESeq2."
## GeneID baseMean log2FoldChange lfcSE stat pvalue
## 1 50486 387.87464 3.641426 0.5224640 6.969717 3.175799e-12
## 2 51129 821.53255 3.445426 0.5043655 6.831209 8.420211e-12
## 3 101928745 18.24317 4.379092 0.6606858 6.628101 3.400333e-11
## 4 105371893 11.44189 3.310608 0.5198118 6.368859 1.904391e-10
## 5 54541 2168.44139 2.629321 0.4187858 6.278439 3.419886e-10
## 6 9123 221.19176 3.463307 0.5587802 6.197977 5.719332e-10
## padj Symbol Description
## 1 7.335779e-08 G0S2 G0/G1 switch 2
## 2 9.724923e-08 ANGPTL4 angiopoietin like 4
## 3 2.618143e-07 LL21NC02-21A1.1 uncharacterized LL21NC02-21A1.1
## 4 1.099738e-06 SLC9A3R1-AS1 SLC9A3R1 antisense RNA 1
## 5 1.579919e-06 DDIT4 DNA damage inducible transcript 4
## 6 2.201847e-06 SLC16A3 solute carrier family 16 member 3
## GeneID baseMean log2FoldChange lfcSE stat pvalue
## 1 50486 387.874644 3.641426 0.5224640 6.969717 3.175799e-12
## 2 51129 821.532546 3.445426 0.5043655 6.831209 8.420211e-12
## 3 101928745 18.243174 4.379092 0.6606858 6.628101 3.400333e-11
## 4 105371893 11.441887 3.310608 0.5198118 6.368859 1.904391e-10
## 5 54541 2168.441393 2.629321 0.4187858 6.278439 3.419886e-10
## 6 9123 221.191761 3.463307 0.5587802 6.197977 5.719332e-10
## 7 101928841 4.533614 4.210083 0.6930791 6.074463 1.244031e-09
## 8 4985 256.614621 -1.761315 0.2956129 -5.958181 2.550611e-09
## 9 7058 2971.480528 1.941216 0.3256012 5.961942 2.492573e-09
## 10 1052 218.234995 2.680591 0.4515502 5.936419 2.913150e-09
## 11 101928399 17.585426 2.410073 0.4057354 5.940011 2.850024e-09
## 12 284889 171.898422 3.362225 0.5710738 5.887549 3.919639e-09
## 13 4828 124.774795 2.597629 0.4430634 5.862883 4.548991e-09
## 14 3726 513.346646 2.805663 0.4919300 5.703379 1.174555e-08
## 15 1675 11.622504 2.560852 0.4508246 5.680374 1.344008e-08
## 16 25907 172.126633 1.933956 0.3418051 5.658066 1.530883e-08
## 17 101929918 9.623633 2.828023 0.4995563 5.661070 1.504318e-08
## 18 102725238 5.968278 3.817776 0.6864203 5.561863 2.669101e-08
## 19 112703 28.767842 3.009840 0.5402534 5.571165 2.530423e-08
## 20 29923 872.366754 3.942818 0.7104753 5.549550 2.864060e-08
## padj Symbol
## 1 7.335779e-08 G0S2
## 2 9.724923e-08 ANGPTL4
## 3 2.618143e-07 LL21NC02-21A1.1
## 4 1.099738e-06 SLC9A3R1-AS1
## 5 1.579919e-06 DDIT4
## 6 2.201847e-06 SLC16A3
## 7 4.105123e-06 LOC101928841
## 8 6.117351e-06 OPRD1
## 9 6.117351e-06 THBS2
## 10 6.117351e-06 CEBPD
## 11 6.117351e-06 LINC01679
## 12 7.544978e-06 MIF-AS1
## 13 8.082857e-06 NMB
## 14 1.937931e-05 JUNB
## 15 2.069682e-05 CFD
## 16 2.080110e-05 TMEM158
## 17 2.080110e-05 LOC101929918
## 18 3.244924e-05 LOC102725238
## 19 3.244924e-05 GARIN5A
## 20 3.307847e-05 HILPDA
## Description
## 1 G0/G1 switch 2
## 2 angiopoietin like 4
## 3 uncharacterized LL21NC02-21A1.1
## 4 SLC9A3R1 antisense RNA 1
## 5 DNA damage inducible transcript 4
## 6 solute carrier family 16 member 3
## 7 replaced by ID 113622
## 8 opioid receptor delta 1
## 9 thrombospondin 2
## 10 CCAAT enhancer binding protein delta
## 11 long intergenic non-protein coding RNA 1679
## 12 MIF antisense RNA 1
## 13 neuromedin B
## 14 JunB proto-oncogene, AP-1 transcription factor subunit
## 15 complement factor D
## 16 transmembrane protein 158
## 17 uncharacterized LOC101929918
## 18 uncharacterized LOC102725238
## 19 golgi associated RAB2 interactor 5A
## 20 hypoxia inducible lipid droplet associated
## GeneID baseMean log2FoldChange lfcSE stat pvalue
## 1 50486 387.87464 3.641426 0.5224640 6.969717 3.175799e-12
## 2 51129 821.53255 3.445426 0.5043655 6.831209 8.420211e-12
## 3 101928745 18.24317 4.379092 0.6606858 6.628101 3.400333e-11
## 4 105371893 11.44189 3.310608 0.5198118 6.368859 1.904391e-10
## 5 54541 2168.44139 2.629321 0.4187858 6.278439 3.419886e-10
## 6 9123 221.19176 3.463307 0.5587802 6.197977 5.719332e-10
## padj Symbol Description
## 1 7.335779e-08 G0S2 G0/G1 switch 2
## 2 9.724923e-08 ANGPTL4 angiopoietin like 4
## 3 2.618143e-07 LL21NC02-21A1.1 uncharacterized LL21NC02-21A1.1
## 4 1.099738e-06 SLC9A3R1-AS1 SLC9A3R1 antisense RNA 1
## 5 1.579919e-06 DDIT4 DNA damage inducible transcript 4
## 6 2.201847e-06 SLC16A3 solute carrier family 16 member 3
## Here we see that the top 10 DE genes are: G0S2, ANGPTL4, LL21NC02-21A1.1, SLC9A3R1-AS1, DDIT4, SLC16A3, LOC101928841, OPRD1, THBS2, CEBPD
## [1] "For context, G0S2 (G0/G1 switch gene 2) is a protein-coding gene that produces a small (103 amino acids) mitochondrial protein primarily known for inhibiting adipose triglyceride lipase (ATGL). It's important to note however that this risk can be mitigated/amplified by other factors. Thus, later we will review some system or pathway analysis."
## [1] "For clarity, the participants were grouped by A1c status as diabetic if the result was 6.5 or higher and is not indicative of true clincial diagnosis. The heatmap however does show a continuous correlation between A1c and gene expression and skewed for higher aged brackets: 51 or older however some younger groups cluster with diabetics. There is a REAL correlation, however moderate. To view this more closely, we can look at A1c without categorically naming it as diabetic vs non-diabetic."
## log2 fold change (MLE): a1c
## Wald test p-value: a1c
## DataFrame with 6 rows and 6 columns
## baseMean log2FoldChange lfcSE stat pvalue padj
## <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
## 4985 256.61462 -0.828793 0.116137 -7.13636 9.58323e-13 2.08339e-08
## 29923 872.36675 2.058622 0.292694 7.03335 2.01630e-12 2.19172e-08
## 102724660 71.36380 1.818599 0.279740 6.50104 7.97678e-11 5.78051e-07
## 8497 17.65388 2.284252 0.363598 6.28236 3.33467e-10 1.81239e-06
## 105376557 9.67117 -0.904528 0.148274 -6.10037 1.05825e-09 4.60127e-06
## 6514 361.56285 -0.824423 0.138558 -5.95001 2.68131e-09 8.62406e-06
## 11185 1510 79805 1902 4907 8795 284611 391059
## 0.4789188 0.4495404 0.4436639 0.4402909 0.4397770 0.4385780 0.4337292 0.4302244
## 101928646 107986742 503637 107984345 5176 83998 4622 928
## 0.4285115 0.4261376 0.4246772 0.4235836 0.4189061 0.4186426 0.4181268 0.4157966
## 5156 3939 3554 9781
## 0.4125026 0.4104339 0.4100386 0.4092349
## 117154 5208 7049 10021 4985 29842 101929550
## -0.4947606 -0.4968688 -0.4999388 -0.5071593 -0.5099526 -0.5115206 -0.5129304
## 3651 732253 340533 137970 10752 9882 57467
## -0.5232209 -0.5288866 -0.5325891 -0.5354615 -0.5386237 -0.5451459 -0.5457915
## 101927193 6514 128178 2555 5502 105374577
## -0.5474121 -0.5487561 -0.5565300 -0.5666360 -0.5674002 -0.5709801
## ENTREZID SYMBOL GENENAME
## 1 11185 INMT indolethylamine N-methyltransferase
## 2 1510 CTSE cathepsin E
## 3 79805 VASH2 vasohibin 2
## 4 1902 LPAR1 lysophosphatidic acid receptor 1
## 5 4907 NT5E 5'-nucleotidase ecto
## 6 8795 TNFRSF10B TNF receptor superfamily member 10b
## 7 284611 EEIG2 EEIG family member 2
## 8 391059 FRRS1 ferric chelate reductase 1
## 9 101928646 BMAL2-AS1 BMAL2 antisense RNA 1
## 10 107986742 LOC107986742 uncharacterized LOC107986742
## 11 503637 DUXAP8 double homeobox A pseudogene 8
## 12 107984345 SMIM38 small integral membrane protein 38
## 13 5176 SERPINF1 serpin family F member 1
## 14 83998 REG4 regenerating family member 4
## 15 4622 MYH4 myosin heavy chain 4
## 16 928 CD9 CD9 molecule
## 17 5156 PDGFRA platelet derived growth factor receptor alpha
## 18 3939 LDHA lactate dehydrogenase A
## 19 3554 IL1R1 interleukin 1 receptor type 1
## 20 9781 RNF144A ring finger protein 144A
## rho
## 1 0.4789188
## 2 0.4495404
## 3 0.4436639
## 4 0.4402909
## 5 0.4397770
## 6 0.4385780
## 7 0.4337292
## 8 0.4302244
## 9 0.4285115
## 10 0.4261376
## 11 0.4246772
## 12 0.4235836
## 13 0.4189061
## 14 0.4186426
## 15 0.4181268
## 16 0.4157966
## 17 0.4125026
## 18 0.4104339
## 19 0.4100386
## 20 0.4092349
## ENTREZID SYMBOL
## 35375 105374577 LOC105374577
## 35374 5502 PPP1R1A
## 35373 2555 GABRA2
## 35372 128178 EDARADD
## 35371 6514 SLC2A2
## 35370 101927193 CHL1-AS1
## 35369 57467 HHATL
## 35368 9882 TBC1D4
## 35367 10752 CHL1
## 35366 137970 UNC5D
## 35365 340533 NEXMIF
## 35364 732253 TDRG1
## 35363 3651 PDX1
## 35362 101929550 LOC101929550
## 35361 29842 TFCP2L1
## 35360 4985 OPRD1
## 35359 10021 HCN4
## 35358 7049 TGFBR3
## 35357 5208 PFKFB2
## 35356 117154 DACH2
## GENENAME
## 35375 uncharacterized LOC105374577
## 35374 protein phosphatase 1 regulatory inhibitor subunit 1A
## 35373 gamma-aminobutyric acid type A receptor subunit alpha2
## 35372 EDAR associated via death domain
## 35371 solute carrier family 2 member 2
## 35370 CHL1 antisense RNA 1
## 35369 hedgehog acyltransferase like
## 35368 TBC1 domain family member 4
## 35367 cell adhesion molecule L1 like
## 35366 unc-5 netrin receptor D
## 35365 neurite extension and migration factor
## 35364 testis development related 1
## 35363 pancreatic and duodenal homeobox 1
## 35362 uncharacterized LOC101929550
## 35361 transcription factor CP2 like 1
## 35360 opioid receptor delta 1
## 35359 hyperpolarization activated cyclic nucleotide gated potassium channel 4
## 35358 transforming growth factor beta receptor 3
## 35357 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2
## 35356 dachshund family transcription factor 2
## rho
## 35375 -0.5709801
## 35374 -0.5674002
## 35373 -0.5666360
## 35372 -0.5565300
## 35371 -0.5487561
## 35370 -0.5474121
## 35369 -0.5457915
## 35368 -0.5451459
## 35367 -0.5386237
## 35366 -0.5354615
## 35365 -0.5325891
## 35364 -0.5288866
## 35363 -0.5232209
## 35362 -0.5129304
## 35361 -0.5115206
## 35360 -0.5099526
## 35359 -0.5071593
## 35358 -0.4999388
## 35357 -0.4968688
## 35356 -0.4947606
## [1] 100
###Need addititional explanative HERE###
This is transcriptomics being converted to systems biology. The way to measure this goes beyond basic DE analysis, although DE analysis can be foundation to downstream analysis .
Let’s first do some additional analysis and visualization. We will first filter for low occurrence to improve signal/noise, thereby improving analysis and statistical significance. This improves confidence, reduces false-discovery, increases confidence, and concentrations active transcripts.
### Repeat plots from before with filtered data #####
# Convert DESeq2 results to a dataframe for ggplot
volcano_data <- as.data.frame(res_a1c)
volcano_data$gene_symbol <- mapIds(org.Hs.eg.db,
keys=rownames(volcano_data),
column="SYMBOL",
keytype="ENTREZID")
# Calculate -log10 P-value
volcano_data$negLogPval <- -log10(volcano_data$padj)
# ggplot logic
ggplot(volcano_data, aes(x = log2FoldChange, y = negLogPval)) +
geom_point(alpha = 0.4, color = "grey") +
# Highlight genes with padj < 0.05 (you can adjust the log2FoldChange threshold)
geom_point(data = subset(volcano_data, padj < 0.05 & abs(log2FoldChange) > 0.1),
aes(x = log2FoldChange, y = negLogPval), color = "steelblue", alpha = 0.8) +
geom_hline(yintercept = -log10(0.05), linetype = "dashed", color = "red") +
labs(title = "Volcano Plot: Effect of HbA1c (Continuous)",
x = "Log2 Fold Change (per 1% A1c)",
y = "-Log10 Adjusted P-value") +
theme_minimal()
# Identify top significant genes from DESeq2 results to drive the MDS
top_de_genes <- rownames(res_a1c[order(res_a1c$padj), ])[1:500]
# Extract transformed counts for these genes
mds_matrix <- assay(vsd)[top_de_genes, ]
# Plot MDS
# We color by 'a1c_status' (Diabetic vs Non-Diabetic) to see if they cluster
plotMDS(mds_matrix,
col = as.numeric(colData(vsd)$a1c_status),
pch = 19,
main = "MDS Plot: Clustering by HbA1c Status")
legend("topright",
legend = levels(colData(vsd)$a1c_status),
col = 1:2, pch = 19, cex = 0.8)
# 1. Identify Top 10 Up and Down genes based on log2FoldChange
# Use which() to safely handle NAs in the padj column
res_sorted <- res_a1c[order(res_a1c$log2FoldChange, decreasing = TRUE), ]
top_up_genes <- rownames(head(res_sorted[which(res_sorted$padj < 0.05), ], 10))
res_sorted_down <- res_a1c[order(res_a1c$log2FoldChange, decreasing = FALSE), ]
top_down_genes <- rownames(head(res_sorted_down[which(res_sorted_down$padj < 0.05), ], 10))
par(mfrow = c(1, 2))
# Plot Top Up
plotMDS(assay(vsd)[top_up_genes, ],
col = as.numeric(colData(vsd)$a1c_status),
pch = 19, main = "Top 10 A1c-Up Genes")
# Plot Top Down
plotMDS(assay(vsd)[top_down_genes, ],
col = as.numeric(colData(vsd)$a1c_status),
pch = 19, main = "Top 10 A1c-Down Genes")
par(mfrow = c(1, 1))
## ID
## R-HSA-72706 R-HSA-72706
## R-HSA-156827 R-HSA-156827
## R-HSA-72689 R-HSA-72689
## R-HSA-72613 R-HSA-72613
## R-HSA-72737 R-HSA-72737
## R-HSA-156902 R-HSA-156902
## Description
## R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit
## R-HSA-156827 L13a-mediated translational silencing of Ceruloplasmin expression
## R-HSA-72689 Formation of a pool of free 40S subunits
## R-HSA-72613 Eukaryotic Translation Initiation
## R-HSA-72737 Cap-dependent Translation Initiation
## R-HSA-156902 Peptide chain elongation
## setSize enrichmentScore NES pvalue p.adjust qvalue
## R-HSA-72706 112 0.6127036 2.825327 1e-10 6.768e-09 5.056842e-09
## R-HSA-156827 111 0.6141312 2.824067 1e-10 6.768e-09 5.056842e-09
## R-HSA-72689 101 0.6219505 2.816896 1e-10 6.768e-09 5.056842e-09
## R-HSA-72613 119 0.6003628 2.802221 1e-10 6.768e-09 5.056842e-09
## R-HSA-72737 119 0.6003628 2.802221 1e-10 6.768e-09 5.056842e-09
## R-HSA-156902 89 0.6256187 2.790760 1e-10 6.768e-09 5.056842e-09
## rank leading_edge
## R-HSA-72706 11453 tags=81%, list=32%, signal=55%
## R-HSA-156827 11453 tags=82%, list=32%, signal=56%
## R-HSA-72689 11453 tags=84%, list=32%, signal=57%
## R-HSA-72613 11453 tags=81%, list=32%, signal=55%
## R-HSA-72737 11453 tags=81%, list=32%, signal=55%
## R-HSA-156902 11453 tags=85%, list=32%, signal=58%
## core_enrichment
## R-HSA-72706 6134/8664/9045/1968/6173/6231/9349/1973/6175/6159/3921/6191/6124/6129/6206/8668/6188/6205/6155/7311/6218/6208/6222/8894/4736/1983/6204/6130/6141/6194/8667/6207/6170/6158/6210/6154/6189/6230/10480/6142/6147/6171/6223/1965/6202/8666/6125/6229/6201/6135/6139/6143/6203/6136/6152/6128/1975/6232/6167/23521/1964/6193/6164/3646/51065/11224/6160/6224/6217/200916/6169/6165/8665/6123/6133/6227/51386/27335/6187/8662/6132/6166/6146/25873/6156/6161/6181/6144/6138/6228/6137
## R-HSA-156827 26986/6134/8664/9045/1968/6173/6231/9349/1973/6175/6159/3921/6191/6124/6129/6206/8668/6188/6205/6155/7311/6218/6208/6222/8894/4736/6204/6130/6141/6194/8667/6207/6170/6158/6210/6154/6189/6230/10480/6142/6147/6171/6223/1965/6202/8666/6125/6229/6201/6135/6139/6143/6203/6136/6152/6128/1975/6232/6167/23521/1964/6193/6164/3646/51065/11224/6160/6224/6217/200916/6169/6165/8665/6123/6133/6227/51386/27335/6187/8662/6132/6166/6146/25873/6156/6161/6181/6144/6138/6228/6137
## R-HSA-72689 6134/8664/9045/6173/6231/9349/6175/6159/3921/6191/6124/6129/6206/8668/6188/6205/6155/7311/6218/6208/6222/4736/6204/6130/6141/6194/8667/6207/6170/6158/6210/6154/6189/6230/10480/6142/6147/6171/6223/6202/8666/6125/6229/6201/6135/6139/6143/6203/6136/6152/6128/6232/6167/23521/1964/6193/6164/3646/51065/11224/6160/6224/6217/200916/6169/6165/8665/6123/6133/6227/51386/27335/6187/8662/6132/6166/6146/25873/6156/6161/6181/6144/6138/6228/6137
## R-HSA-72613 26986/6134/8664/9045/1968/6173/6231/9349/1973/6175/6159/3921/6191/6124/6129/6206/8668/6188/6205/6155/7311/6218/6208/6222/8894/4736/1983/6204/6130/6141/6194/8667/6207/6170/6158/6210/6154/6189/6230/10480/6142/6147/6171/6223/1965/6202/8666/6125/6229/6201/6135/1967/6139/6143/6203/6136/6152/6128/1975/6232/6167/23521/1964/6193/6164/3646/51065/11224/8892/6160/6224/6217/200916/6169/6165/8665/6123/6133/6227/51386/1978/27335/6187/8662/8890/6132/6166/6146/25873/6156/6161/6181/6144/6138/6228/6137
## R-HSA-72737 26986/6134/8664/9045/1968/6173/6231/9349/1973/6175/6159/3921/6191/6124/6129/6206/8668/6188/6205/6155/7311/6218/6208/6222/8894/4736/1983/6204/6130/6141/6194/8667/6207/6170/6158/6210/6154/6189/6230/10480/6142/6147/6171/6223/1965/6202/8666/6125/6229/6201/6135/1967/6139/6143/6203/6136/6152/6128/1975/6232/6167/23521/1964/6193/6164/3646/51065/11224/8892/6160/6224/6217/200916/6169/6165/8665/6123/6133/6227/51386/1978/27335/6187/8662/8890/6132/6166/6146/25873/6156/6161/6181/6144/6138/6228/6137
## R-HSA-156902 6134/9045/6173/6231/9349/6175/6159/3921/6191/6124/6129/1915/6206/6188/6205/6155/7311/6218/6208/6222/4736/6204/6130/6141/6194/6207/6170/6158/6210/6154/6189/6230/6142/6147/6171/6223/6202/6125/6229/6201/6135/6139/6143/6203/6136/6152/6128/6232/6167/23521/6193/6164/51065/11224/6160/6224/6217/200916/6169/6165/6123/6133/6227/1938/6187/6132/6166/6146/25873/6156/6161/6181/6144/6138/6228/6137
## [1] "Reactome GSEA showing pathways positively (activated) and negatively (suppressed) associated with increasing A1c. Activation and suppression denote direction of association (NES sign), not causal effects. \n \n Genes belonging to this pathway are disproportionately represented among those most positively correlated with increasing A1c, indicating coordinated upregulation of the pathway as glycemic control worsens."
Pathway Analysis Section: GO, Kegg, & Reactome Analysis Type,Function,Best For: GO (BP),enrichGO,“Broad biological mechanisms (e.g.,”“Cell Proliferation”“)” KEGG,enrichKEGG,“Well-defined metabolic/signaling maps (e.g.,”“Glycolysis”“)” Reactome,enrichPathway,Detailed molecular reactions and hierarchies
GO DETAIL: Category,Question it Answers,Level of Detail BP (Biological Process),What is the overall goal?,System-wide / Cellular program MF (Molecular Function),What is the chemical task?,Molecular / Biochemical CC (Cellular Component),Where is this happening?,Structural / Spatial
Results Explained: ####### References ################
## [1] "1. Zhang X, Heckmann BL, Campbell LE, Liu J. G0S2: A small giant controller of lipolysis and adipose-liver fatty acid flux. Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Oct;1862(10 Pt B):1146-1154. doi: 10.1016/j.bbalip.2017.06.007. Epub 2017 Jun 21. PMID: 28645852; PMCID: PMC5890940."
## [1] "2. Zhou Y, Park SY, Su J, Bailey K et al. TCF7L2 is a master regulator of insulin production and processing. Hum Mol Genet 2014 Dec 15;23(24):6419-31. PMID: 25015099\nFadista J, Vikman P, Laakso EO, Mollet IG et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A 2014 Sep 23;111(38):13924-9. PMID: 25201977\nTaneera J, Fadista J, Ahlqvist E, Atac D et al. Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia. Hum Mol Genet 2015 Apr 1;24(7):1945-55. PMID: 25489054\nMalenczyk K, Girach F, Szodorai E, Storm P et al. A TRPV1-to-secretagogin regulatory axis controls pancreatic β-cell survival by modulating protein turnover. EMBO J 2017 Jul 14;36(14):2107-2125. PMID: 28637794\nTaneera J, Mohammed I, Mohammed AK, Hachim M et al. Orphan G-protein coupled receptor 183 (GPR183) potentiates insulin secretion and prevents glucotoxicity-induced β-cell dysfunction. Mol Cell Endocrinol 2020 Jan 1;499:110592. PMID: 31550518\nLagou V, Mägi R, Hottenga JJ, Grallert H et al. Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nat Commun 2021 Jan 5;12(1):24. PMID: 33402679"
## [1] "3. Software:"
## Please cite the following if utilizing the GEOquery software:
##
## Davis S, Meltzer P (2007). "GEOquery: a bridge between the Gene
## Expression Omnibus (GEO) and BioConductor." _Bioinformatics_, *14*,
## 1846-1847. doi:10.1093/bioinformatics/btm254
## <https://doi.org/10.1093/bioinformatics/btm254>.
##
## A BibTeX entry for LaTeX users is
##
## @Article{,
## author = {Sean Davis and Paul Meltzer},
## title = {GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor},
## journal = {Bioinformatics},
## year = {2007},
## volume = {14},
## pages = {1846--1847},
## doi = {10.1093/bioinformatics/btm254},
## }
## To cite package 'DESeq2' in publications use:
##
## Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change
## and dispersion for RNA-seq data with DESeq2 Genome Biology 15(12):550
## (2014)
##
## A BibTeX entry for LaTeX users is
##
## @Article{,
## title = {Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2},
## author = {Michael I. Love and Wolfgang Huber and Simon Anders},
## year = {2014},
## journal = {Genome Biology},
## doi = {10.1186/s13059-014-0550-8},
## volume = {15},
## issue = {12},
## pages = {550},
## }
## To cite package 'pheatmap' in publications use:
##
## Kolde R (2025). _pheatmap: Pretty Heatmaps_.
## doi:10.32614/CRAN.package.pheatmap
## <https://doi.org/10.32614/CRAN.package.pheatmap>, R package version
## 1.0.13, <https://CRAN.R-project.org/package=pheatmap>.
##
## A BibTeX entry for LaTeX users is
##
## @Manual{,
## title = {pheatmap: Pretty Heatmaps},
## author = {Raivo Kolde},
## year = {2025},
## note = {R package version 1.0.13},
## url = {https://CRAN.R-project.org/package=pheatmap},
## doi = {10.32614/CRAN.package.pheatmap},
## }
## Please cite G. Yu (2015) for using ReactomePA. In addition, please cite
## G. Yu (2012) when using compareCluster in clusterProfiler package, G.
## Yu (2015) when applying enrichment analysis to NGS data by using
## ChIPseeker
##
## Guangchuang Yu, Qing-Yu He. ReactomePA: an R/Bioconductor package for
## reactome pathway analysis and visualization. Molecular BioSystems
## 2016, 12(2):477-479
##
## A BibTeX entry for LaTeX users is
##
## @Article{,
## title = {ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization},
## author = {Guangchuang Yu and Qing-Yu He},
## journal = {Molecular BioSystems},
## year = {2016},
## volume = {12},
## number = {12},
## pages = {477-479},
## pmid = {26661513},
## url = {http://pubs.rsc.org/en/Content/ArticleLanding/2015/MB/C5MB00663E},
## doi = {10.1039/C5MB00663E},
## }
## Please cite S. Xu (2024) for using clusterProfiler. In addition, please
## cite G. Yu (2010) when using GOSemSim, G. Yu (2015) when using DOSE and
## G. Yu (2015) when using ChIPseeker.
##
## G Yu. Thirteen years of clusterProfiler. The Innovation. 2024,
## 5(6):100722
##
## S Xu, E Hu, Y Cai, Z Xie, X Luo, L Zhan, W Tang, Q Wang, B Liu, R
## Wang, W Xie, T Wu, L Xie, G Yu. Using clusterProfiler to characterize
## multiomics data. Nature Protocols. 2024, 19(11):3292-3320
##
## T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L
## Zhan, X Fu, S Liu, X Bo, and G Yu. clusterProfiler 4.0: A universal
## enrichment tool for interpreting omics data. The Innovation. 2021,
## 2(3):100141
##
## Guangchuang Yu, Li-Gen Wang, Yanyan Han and Qing-Yu He.
## clusterProfiler: an R package for comparing biological themes among
## gene clusters. OMICS: A Journal of Integrative Biology 2012,
## 16(5):284-287
##
## To see these entries in BibTeX format, use 'print(<citation>,
## bibtex=TRUE)', 'toBibtex(.)', or set
## 'options(citation.bibtex.max=999)'.
## To cite package 'limma' in publications use:
##
## Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and
## Smyth, G.K. (2015). limma powers differential expression analyses for
## RNA-sequencing and microarray studies. Nucleic Acids Research 43(7),
## e47.
##
## A BibTeX entry for LaTeX users is
##
## @Article{,
## author = {Matthew E Ritchie and Belinda Phipson and Di Wu and Yifang Hu and Charity W Law and Wei Shi and Gordon K Smyth},
## title = {{limma} powers differential expression analyses for {RNA}-sequencing and microarray studies},
## journal = {Nucleic Acids Research},
## year = {2015},
## volume = {43},
## number = {7},
## pages = {e47},
## doi = {10.1093/nar/gkv007},
## }
## To cite package 'enrichplot' in publications use:
##
## Yu G (2025). _enrichplot: Visualization of Functional Enrichment
## Result_. doi:10.18129/B9.bioc.enrichplot
## <https://doi.org/10.18129/B9.bioc.enrichplot>, R package version
## 1.30.4, <https://bioconductor.org/packages/enrichplot>.
##
## A BibTeX entry for LaTeX users is
##
## @Manual{,
## title = {enrichplot: Visualization of Functional Enrichment Result},
## author = {Guangchuang Yu},
## year = {2025},
## note = {R package version 1.30.4},
## url = {https://bioconductor.org/packages/enrichplot},
## doi = {10.18129/B9.bioc.enrichplot},
## }
## To cite package 'org.Hs.eg.db' in publications use:
##
## Carlson M (2025). _org.Hs.eg.db: Genome wide annotation for Human_. R
## package version 3.22.0.
##
## A BibTeX entry for LaTeX users is
##
## @Manual{,
## title = {org.Hs.eg.db: Genome wide annotation for Human},
## author = {Marc Carlson},
## year = {2025},
## note = {R package version 3.22.0},
## }
##
## ATTENTION: This citation information has been auto-generated from the
## package DESCRIPTION file and may need manual editing, see
## 'help("citation")'.
## To cite ggplot2 in publications, please use
##
## H. Wickham. ggplot2: Elegant Graphics for Data Analysis.
## Springer-Verlag New York, 2016.
##
## A BibTeX entry for LaTeX users is
##
## @Book{,
## author = {Hadley Wickham},
## title = {ggplot2: Elegant Graphics for Data Analysis},
## publisher = {Springer-Verlag New York},
## year = {2016},
## isbn = {978-3-319-24277-4},
## url = {https://ggplot2.tidyverse.org},
## }
## To cite package 'stringr' in publications use:
##
## Wickham H (2025). _stringr: Simple, Consistent Wrappers for Common
## String Operations_. doi:10.32614/CRAN.package.stringr
## <https://doi.org/10.32614/CRAN.package.stringr>, R package version
## 1.6.0, <https://CRAN.R-project.org/package=stringr>.
##
## A BibTeX entry for LaTeX users is
##
## @Manual{,
## title = {stringr: Simple, Consistent Wrappers for Common String Operations},
## author = {Hadley Wickham},
## year = {2025},
## note = {R package version 1.6.0},
## url = {https://CRAN.R-project.org/package=stringr},
## doi = {10.32614/CRAN.package.stringr},
## }
## To cite package 'tidyverse' in publications use:
##
## Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R,
## Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller
## E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V,
## Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). "Welcome to
## the tidyverse." _Journal of Open Source Software_, *4*(43), 1686.
## doi:10.21105/joss.01686 <https://doi.org/10.21105/joss.01686>.
##
## A BibTeX entry for LaTeX users is
##
## @Article{,
## title = {Welcome to the {tidyverse}},
## author = {Hadley Wickham and Mara Averick and Jennifer Bryan and Winston Chang and Lucy D'Agostino McGowan and Romain François and Garrett Grolemund and Alex Hayes and Lionel Henry and Jim Hester and Max Kuhn and Thomas Lin Pedersen and Evan Miller and Stephan Milton Bache and Kirill Müller and Jeroen Ooms and David Robinson and Dana Paige Seidel and Vitalie Spinu and Kohske Takahashi and Davis Vaughan and Claus Wilke and Kara Woo and Hiroaki Yutani},
## year = {2019},
## journal = {Journal of Open Source Software},
## volume = {4},
## number = {43},
## pages = {1686},
## doi = {10.21105/joss.01686},
## }