1 Introducción y Metodología

El presente informe estadístico analiza la variable Radiación Solar registrada en la estación meteorológica del Antisana. Esta variable cuantifica la energía recibida por unidad de superficie, siendo un indicador directo de la nubosidad y el potencial energético en la zona.

# 1. LIBRERÍAS Y CARGA DE DATOS

library(readxl)
library(dplyr)
library(gt)
library(e1071)

# Carga de datos 
Datos_Brutos <- read.csv("C:\\Users\\User\\Downloads\\datos_clima.antisana.csv", check.names = FALSE)
colnames(Datos_Brutos) <- trimws(colnames(Datos_Brutos))

# Selección y limpieza 
Datos <- Datos_Brutos %>%
  select(any_of(c("Date", "Solar"))) %>%
  mutate(Variable_Analisis = as.numeric(gsub(",", ".", as.character(`Solar`))))

Variable <- na.omit(Datos$Variable_Analisis)

Variable <- Variable[Variable >= 0 & Variable < 50]

if(length(Variable) == 0) {
  stop("ERROR: No hay datos válidos en la variable seleccionada.")
}

# 2. CÁLCULOS MATEMÁTICOS PARA LA TABLA

N <- length(Variable)

min_val <- min(Variable)
max_val <- max(Variable)
Rango <- max_val - min_val
K <- floor(1 + 3.322 * log10(N)) 
Amplitud <- Rango / K

breaks_table <- seq(min_val, max_val, length.out = K + 1)
breaks_table[length(breaks_table)] <- max_val + 0.0001 

lim_inf_table <- breaks_table[1:K]
lim_sup_table <- breaks_table[2:(K+1)]
MC <- (lim_inf_table + lim_sup_table) / 2

ni <- numeric(K)
for (i in 1:K) {
  if (i < K) {
    ni[i] <- length(Variable[Variable >= lim_inf_table[i] & Variable < lim_sup_table[i]])
  } else {
    ni[i] <- length(Variable[Variable >= lim_inf_table[i] & Variable <= lim_sup_table[i]])
  }
}

hi <- (ni / sum(ni)) * 100 
Ni_asc <- cumsum(ni)
Ni_desc <- rev(cumsum(rev(ni)))
Hi_asc <- cumsum(hi)
Hi_desc <- rev(cumsum(rev(hi)))

TDF_Solar <- data.frame(
  Li = round(lim_inf_table, 2), 
  Ls = round(lim_sup_table, 2), 
  MC = round(MC, 2),            
  ni = ni, 
  hi = round(hi, 2),
  Ni_asc = Ni_asc, 
  Ni_desc = Ni_desc, 
  Hi_asc = round(Hi_asc, 2), 
  Hi_desc = round(Hi_desc, 2)
)

2 Distribución de Frecuencias

A continuación se presenta la tabla de distribución de frecuencias obtenida para la radiación solar global.

# Totales
totales <- c("TOTAL", "-", "-", sum(ni), round(sum(hi), 2), "-", "-", "-", "-")
TDF_Char <- TDF_Solar %>% mutate(across(everything(), as.character))
TDF_Final <- rbind(TDF_Char, totales)

TDF_Final %>%
  gt() %>%
  tab_header(
    title = md("**DISTRIBUCIÓN DE FRECUENCIAS - ANTISANA**"),
    subtitle = md("Variable: **Radiación Solar (MJ/m²)**")
  ) %>%
  tab_source_note(source_note = "Fuente: Datos Meteorológicos Antisana") %>%
  cols_label(
    Li = "Lím. Inf", Ls = "Lím. Sup", MC = "Marca Clase (Xi)", 
    ni = "ni", hi = "hi (%)", 
    Ni_asc = "Ni (Asc)", Ni_desc = "Ni (Desc)",
    Hi_asc = "Hi (Asc)", Hi_desc = "Hi (Desc)"
  ) %>%
  cols_align(align = "center", columns = everything()) %>%
  tab_style(
    style = list(cell_fill(color = "#2E4053"), cell_text(color = "white", weight = "bold")),
    locations = cells_title()
  ) %>%
  tab_style(
    style = list(cell_fill(color = "#F2F3F4"), cell_text(weight = "bold", color = "#2E4053")),
    locations = cells_column_labels()
  ) %>%
  tab_options(
    table.border.top.color = "#2E4053",
    table.border.bottom.color = "#2E4053",
    column_labels.border.bottom.color = "#2E4053",
    data_row.padding = px(6)
  )
DISTRIBUCIÓN DE FRECUENCIAS - ANTISANA
Variable: Radiación Solar (MJ/m²)
Lím. Inf Lím. Sup Marca Clase (Xi) ni hi (%) Ni (Asc) Ni (Desc) Hi (Asc) Hi (Desc)
1.26 4.48 2.87 40 10.93 40 366 10.93 100
4.48 7.71 6.1 57 15.57 97 326 26.5 89.07
7.71 10.93 9.32 55 15.03 152 269 41.53 73.5
10.93 14.15 12.54 55 15.03 207 214 56.56 58.47
14.15 17.38 15.77 30 8.2 237 159 64.75 43.44
17.38 20.6 18.99 17 4.64 254 129 69.4 35.25
20.6 23.82 22.21 35 9.56 289 112 78.96 30.6
23.82 27.05 25.44 48 13.11 337 77 92.08 21.04
27.05 30.27 28.66 29 7.92 366 29 100 7.92
TOTAL - - 366 100 - - - -
Fuente: Datos Meteorológicos Antisana

3 Análisis Gráfico

Esta sección presenta la visualización de la distribución de la energía solar recibida.

3.1 Histogramas de Frecuencia

col_gris_azulado <- "#5D6D7E"
col_ejes <- "#2E4053"
h_base <- hist(Variable, breaks = "Sturges", plot = FALSE)

# GRÁFICO 1: Histograma Absoluto (Local)
par(mar = c(8, 5, 4, 2)) 
plot(h_base, 
     main = "Gráfica No.1: Distribución de Radiación Solar en Antisana",
     xlab = "Radiación Solar (MJ/m²)",
     ylab = "Frecuencia Absoluta (Días)",
     col = col_gris_azulado, border = "white", axes = FALSE,
     ylim = c(0, max(h_base$counts) * 1.1)) 

axis(1, at = round(h_base$breaks, 1), labels = format(round(h_base$breaks, 1), scientific = FALSE), las = 2, cex.axis = 0.7)
axis(2)
grid(nx=NA, ny=NULL, col="#D7DBDD", lty="dotted") 

# GRÁFICO 2: Histograma Global
par(mar = c(8, 5, 4, 2))
plot(h_base, 
     main = "Gráfica N°2: Distribución Global de Radiación Solar",
     xlab = "Radiación Solar (MJ/m²)",
     ylab = "Total Días",
     col = col_gris_azulado, border = "white", axes = FALSE, 
     ylim = c(0, sum(h_base$counts))) 

axis(1, at = round(h_base$breaks, 1), labels = format(round(h_base$breaks, 1), scientific = FALSE), las = 2, cex.axis = 0.7)
axis(2)
grid(nx=NA, ny=NULL, col="#D7DBDD", lty="dotted")

3.2 Gráficos Porcentuales

h_porc <- h_base
h_porc$counts <- (h_porc$counts / sum(h_porc$counts)) * 100
h_porc$density <- h_porc$counts 

# GRÁFICO 3: Porcentajes (Local)
par(mar = c(8, 5, 4, 2))
plot(h_porc,
     main = "Gráfica N°3: Distribución Porcentual de Radiación Solar",
     xlab = "Radiación Solar (MJ/m²)",
     ylab = "Porcentaje (%)",
     col = col_gris_azulado, border = "white", axes = FALSE, freq = TRUE,
     ylim = c(0, max(h_porc$counts)*1.2))

axis(1, at = round(h_base$breaks, 1), labels = format(round(h_base$breaks, 1), scientific = FALSE), las = 2, cex.axis = 0.7)
axis(2)
text(x = h_base$mids, y = h_porc$counts, label = paste0(round(h_porc$counts, 1), "%"), pos = 3, cex = 0.6, col = col_ejes)
grid(nx=NA, ny=NULL, col="#D7DBDD", lty="dotted") 

# GRÁFICO 4: Global Porcentual
par(mar = c(8, 5, 4, 2))
plot(h_porc,
     main = "Gráfica No.4: Distribución Porcentual Global (Radiación)",
     xlab = "Radiación Solar (MJ/m²)",
     ylab = "% del Total", 
     col = col_gris_azulado, border = "white", axes = FALSE, freq = TRUE,
     ylim = c(0, 100))

axis(1, at = round(h_base$breaks, 1), labels = format(round(h_base$breaks, 1), scientific = FALSE), las = 2, cex.axis = 0.7)
text(x = h_base$mids, y = h_porc$counts, label = paste0(round(h_porc$counts, 1), "%"), pos = 3, cex = 0.6, col = col_ejes)
axis(2)
abline(h=seq(0,100,20), col="#D7DBDD", lty="dotted")

3.3 Diagrama de Caja y Ojivas

# GRÁFICO 5: Boxplot
par(mar = c(5, 5, 4, 2))
boxplot(Variable, horizontal = TRUE, col = col_gris_azulado, 
        main = "Gráfica No.5: Diagrama de Caja de Radiación Solar",
        xlab = "Radiación Solar (MJ/m²)", outline = TRUE, outpch = 19, outcol = "#C0392B", 
        boxwex = 0.5, frame.plot = FALSE, xaxt = "n") 
eje_x_detallado <- pretty(Variable, n = 20) 
axis(1, at = eje_x_detallado, labels = format(eje_x_detallado, scientific = FALSE), cex.axis=0.7, las=2)
grid(nx=NULL, ny=NA, col="lightgray", lty="dotted")

# GRÁFICO 6: Ojivas
par(mar = c(5, 5, 4, 8), xpd = TRUE) 

x_asc <- c(min(breaks_table), breaks_table[2:length(breaks_table)])
y_asc <- c(0, Ni_asc)


x_desc <- c(min(breaks_table), breaks_table[2:length(breaks_table)])
y_desc <- c(Ni_desc, 0) 

x_range <- range(c(x_asc, x_desc))
y_range <- c(0, max(c(y_asc, y_desc)))
col_azul <- "#2E4053"
col_rojo <- "#C0392B"

plot(x_asc, y_asc, type = "o", col = col_azul, lwd=2, pch=19,
     main = "Gráfica No.6: Ojivas Ascendente y Descendente de Radiación",
     xlab = "Radiación Solar (MJ/m²)", ylab = "Frecuencia acumulada",
     xlim = x_range, ylim = y_range, axes = FALSE, frame.plot = FALSE, cex.main=0.95)

axis(1, at = round(breaks_table,1), labels = format(round(breaks_table,1), scientific = FALSE), las=2, cex.axis=0.6)
axis(2, at = pretty(y_asc), labels = format(pretty(y_asc), scientific = FALSE))

lines(x_asc, y_desc, type = "o", col = col_rojo, lwd=2, pch=19)

legend("right", legend = c("Ascendente", "Descendente"),
       col = c(col_azul, col_rojo), lty = 1, pch = 19, cex = 0.7, lwd=2,
       inset = c(-0.15, 0), bty="n")
grid()

4 Resumen Estadístico

# CÁLCULO DE INDICADORES 

media_val <- mean(Variable)
mediana_val <- median(Variable)

freq_max <- max(TDF_Solar$ni)
modas_calc <- TDF_Solar$MC[TDF_Solar$ni == freq_max]
moda_txt <- paste(round(modas_calc, 2), collapse = ", ")

rango_txt <- paste0("[", round(min(Variable), 2), "; ", round(max(Variable), 2), "]")
varianza_val <- var(Variable)
sd_val <- sd(Variable)
cv_val <- (sd_val / abs(media_val)) * 100

asimetria_val <- skewness(Variable, type = 2)
curtosis_val <- kurtosis(Variable, type = 2)

vals_atipicos <- boxplot.stats(Variable)$out
num_atipicos <- length(vals_atipicos)

status_atipicos <- if(num_atipicos > 0) {
  min_out <- min(vals_atipicos)
  max_out <- max(vals_atipicos)
  paste0(num_atipicos, " [", round(min_out, 2), "; ", round(max_out, 2), "]")
} else {
  "0 (Sin atípicos)"
}

df_resumen <- data.frame(
  "Variable" = "Radiación Solar (MJ/m²)",
  "Rango" = rango_txt,
  "Media" = media_val,
  "Mediana" = mediana_val,
  "Moda" = moda_txt,
  "Varianza" = varianza_val,
  "Desv_Std" = sd_val,
  "CV_Porc" = cv_val,
  "Asimetria" = asimetria_val,
  "Curtosis" = curtosis_val,
  "Atipicos" = status_atipicos
)

df_resumen %>%
  gt() %>%
  tab_header(
    title = md("**CONCLUSIONES Y ESTADÍSTICOS**"),
    subtitle = "Resumen de Indicadores - Estación Antisana"
  ) %>%
  tab_source_note(source_note = "Autor: Grupo 3") %>%
  fmt_number(columns = c(Media, Mediana, Varianza, Desv_Std, CV_Porc, Curtosis), decimals = 2) %>%
  fmt_number(columns = c(Asimetria), decimals = 4) %>%
  cols_label(
    Variable = "Variable",
    Rango = "Rango Total",
    Media = "Media (X̄)",
    Mediana = "Mediana (Me)",
    Moda = "Moda (Mo)",
    Varianza = "Varianza (S²)",
    Desv_Std = "Desv. Est. (S)",
    CV_Porc = "C.V. (%)",
    Asimetria = "Asimetría (As)",
    Curtosis = "Curtosis (K)",
    Atipicos = "Outliers [Intervalo]"
  ) %>%
  tab_options(
    column_labels.background.color = "#2E4053",
    table.border.top.color = "black",
    table.border.bottom.color = "#2E4053",
    column_labels.border.bottom.color = "#2E4053",
    data_row.padding = px(8)
  ) %>%
  tab_style(
    style = list(cell_text(weight = "bold", color = "white")),
    locations = cells_column_labels()
  )
CONCLUSIONES Y ESTADÍSTICOS
Resumen de Indicadores - Estación Antisana
Variable Rango Total Media (X̄) Mediana (Me) Moda (Mo) Varianza (S²) Desv. Est. (S) C.V. (%) Asimetría (As) Curtosis (K) Outliers [Intervalo]
Radiación Solar (MJ/m²) [1.26; 30.27] 14.44 12.66 6.1 69.36 8.33 57.69 0.2996 −1.23 0 (Sin atípicos)
Autor: Grupo 3

5 Conclusiones

min_txt <- format(min(Variable), scientific = FALSE)
max_txt <- format(max(Variable), scientific = FALSE)

asimetria_val <- skewness(Variable, type = 2)

if (abs(asimetria_val) > 0.5) {
  centro_valor <- format(round(median(Variable), 2), scientific = FALSE)
} else {
  centro_valor <- format(round(mean(Variable), 2), scientific = FALSE)
}

sd_txt <- format(round(sd(Variable), 4), scientific = FALSE)
cv_calc <- (sd(Variable) / abs(mean(Variable))) * 100
tipo_homogeneidad <- if(cv_calc > 30) "heterogénea" else "homogénea"

donde_se_concentra <- if(asimetria_val > 0) "parte media baja" else "parte media alta"

outliers_lista <- boxplot.stats(Variable)$out
num_outliers <- length(outliers_lista)

texto_outliers <- if(num_outliers > 0) {
  paste0("con la presencia de **", num_outliers, " valores atípicos**")
} else {
  "sin valores atípicos significativos"
}


umbral_radiacion <- 12 

juicio_solar <- if(median(Variable) < umbral_radiacion) {
   
  "moderado a bajo, lo que sugiere una prevalencia de días con cobertura nubosa significativa que atenúa la incidencia solar directa, protegiendo parcialmente el suelo de la evapotranspiración extrema"
} else {
   
  "alto y significativo, indicando la predominancia de cielos despejados que maximizan la entrada de energía al sistema, elevando potencialmente los índices UV y la tasa de derretimiento superficial diurno"
}

cat(paste0(
  "## Análisis Descriptivo y de Radiación\n\n",
   
  "La variable **Radiación Solar** fluctúa entre **", min_txt, "** y **", max_txt, "** MJ/m², ",
  "y sus valores se encuentran alrededor de **", centro_valor, "** MJ/m². ",
  "Presenta una desviación estándar de **", sd_txt, "**, siendo una variable **", tipo_homogeneidad, "** ",
  "(CV: ", round(cv_calc, 2), "%), ",
  "cuyos valores se concentran en la **", donde_se_concentra, "** de la distribución ",
  texto_outliers, "; ",
   
  "**por todo lo anterior, el ingreso energético solar se considera ", juicio_solar, ".**"
))

5.1 Análisis Descriptivo y de Radiación

La variable Radiación Solar fluctúa entre 1.26 y 30.27 MJ/m², y sus valores se encuentran alrededor de 14.44 MJ/m². Presenta una desviación estándar de 8.3282, siendo una variable heterogénea (CV: 57.69%), cuyos valores se concentran en la parte media baja de la distribución sin valores atípicos significativos; por todo lo anterior, el ingreso energético solar se considera alto y significativo, indicando la predominancia de cielos despejados que maximizan la entrada de energía al sistema, elevando potencialmente los índices UV y la tasa de derretimiento superficial diurno.