El presente informe estadístico analiza la variable Temperatura Mínima registrada en la estación meteorológica del Antisana.
# 1. LIBRERÍAS Y CARGA DE DATOS
library(readxl)
library(dplyr)
library(gt)
library(e1071)
# Carga de datos
Datos_Brutos <- read.csv("C:\\Users\\User\\Downloads\\datos_clima.antisana.csv", check.names = FALSE)
colnames(Datos_Brutos) <- trimws(colnames(Datos_Brutos))
# Selección y limpieza (Variable: Min Temperature)
Datos <- Datos_Brutos %>%
select(any_of(c("Date", "Min Temperature"))) %>%
mutate(Variable_Analisis = as.numeric(gsub(",", ".", as.character(`Min Temperature`))))
Variable <- na.omit(Datos$Variable_Analisis)
Variable <- Variable[Variable > -50 & Variable < 100]
if(length(Variable) == 0) {
stop("ERROR: No hay datos válidos en la variable seleccionada.")
}
# 2. CÁLCULOS MATEMÁTICOS PARA LA TABLA
N <- length(Variable)
min_val <- min(Variable)
max_val <- max(Variable)
Rango <- max_val - min_val
K <- floor(1 + 3.322 * log10(N))
Amplitud <- Rango / K
breaks_table <- seq(min_val, max_val, length.out = K + 1)
breaks_table[length(breaks_table)] <- max_val + 0.0001
lim_inf_table <- breaks_table[1:K]
lim_sup_table <- breaks_table[2:(K+1)]
MC <- (lim_inf_table + lim_sup_table) / 2
ni <- numeric(K)
for (i in 1:K) {
if (i < K) {
ni[i] <- length(Variable[Variable >= lim_inf_table[i] & Variable < lim_sup_table[i]])
} else {
ni[i] <- length(Variable[Variable >= lim_inf_table[i] & Variable <= lim_sup_table[i]])
}
}
hi <- (ni / sum(ni)) * 100
Ni_asc <- cumsum(ni)
Ni_desc <- rev(cumsum(rev(ni)))
Hi_asc <- cumsum(hi)
Hi_desc <- rev(cumsum(rev(hi)))
TDF_Temp <- data.frame(
Li = round(lim_inf_table, 2),
Ls = round(lim_sup_table, 2),
MC = round(MC, 2),
ni = ni,
hi = round(hi, 2),
Ni_asc = Ni_asc,
Ni_desc = Ni_desc,
Hi_asc = round(Hi_asc, 2),
Hi_desc = round(Hi_desc, 2)
)A continuación se presenta la tabla de distribución de frecuencias obtenida.
# Totales
totales <- c("TOTAL", "-", "-", sum(ni), round(sum(hi), 2), "-", "-", "-", "-")
TDF_Char <- TDF_Temp %>% mutate(across(everything(), as.character))
TDF_Final <- rbind(TDF_Char, totales)
TDF_Final %>%
gt() %>%
tab_header(
title = md("**DISTRIBUCIÓN DE FRECUENCIAS - ANTISANA**"),
subtitle = md("Variable: **Temperatura Mínima (°C)**")
) %>%
tab_source_note(source_note = "Fuente: Datos Meteorológicos Antisana") %>%
cols_label(
Li = "Lím. Inf", Ls = "Lím. Sup", MC = "Marca Clase (Xi)",
ni = "ni", hi = "hi (%)",
Ni_asc = "Ni (Asc)", Ni_desc = "Ni (Desc)",
Hi_asc = "Hi (Asc)", Hi_desc = "Hi (Desc)"
) %>%
cols_align(align = "center", columns = everything()) %>%
tab_style(
style = list(cell_fill(color = "#2E4053"), cell_text(color = "white", weight = "bold")),
locations = cells_title()
) %>%
tab_style(
style = list(cell_fill(color = "#F2F3F4"), cell_text(weight = "bold", color = "#2E4053")),
locations = cells_column_labels()
) %>%
tab_options(
table.border.top.color = "#2E4053",
table.border.bottom.color = "#2E4053",
column_labels.border.bottom.color = "#2E4053",
data_row.padding = px(6)
)| DISTRIBUCIÓN DE FRECUENCIAS - ANTISANA | ||||||||
| Variable: Temperatura Mínima (°C) | ||||||||
| Lím. Inf | Lím. Sup | Marca Clase (Xi) | ni | hi (%) | Ni (Asc) | Ni (Desc) | Hi (Asc) | Hi (Desc) |
|---|---|---|---|---|---|---|---|---|
| 2.65 | 3.56 | 3.11 | 2 | 0.55 | 2 | 366 | 0.55 | 100 |
| 3.56 | 4.47 | 4.02 | 4 | 1.09 | 6 | 364 | 1.64 | 99.45 |
| 4.47 | 5.38 | 4.93 | 5 | 1.37 | 11 | 360 | 3.01 | 98.36 |
| 5.38 | 6.29 | 5.84 | 21 | 5.74 | 32 | 355 | 8.74 | 96.99 |
| 6.29 | 7.21 | 6.75 | 55 | 15.03 | 87 | 334 | 23.77 | 91.26 |
| 7.21 | 8.12 | 7.66 | 108 | 29.51 | 195 | 279 | 53.28 | 76.23 |
| 8.12 | 9.03 | 8.57 | 80 | 21.86 | 275 | 171 | 75.14 | 46.72 |
| 9.03 | 9.94 | 9.48 | 60 | 16.39 | 335 | 91 | 91.53 | 24.86 |
| 9.94 | 10.85 | 10.39 | 31 | 8.47 | 366 | 31 | 100 | 8.47 |
| TOTAL | - | - | 366 | 100 | - | - | - | - |
| Fuente: Datos Meteorológicos Antisana | ||||||||
Esta sección presenta la visualización de la distribución de los datos climáticos.
col_gris_azulado <- "#5D6D7E" # Restaurado al color original
col_ejes <- "#2E4053"
h_base <- hist(Variable, breaks = "Sturges", plot = FALSE)
# GRÁFICO 1: Histograma Absoluto (Local)
par(mar = c(8, 5, 4, 2))
plot(h_base,
main = "Gráfica No.1: Distribución de Temperatura Mínima en Antisana",
xlab = "Temperatura Mínima (°C)",
ylab = "Frecuencia Absoluta (Días)",
col = col_gris_azulado, border = "white", axes = FALSE,
ylim = c(0, max(h_base$counts) * 1.1))
axis(1, at = round(h_base$breaks, 1), labels = format(round(h_base$breaks, 1), scientific = FALSE), las = 2, cex.axis = 0.7)
axis(2)
grid(nx=NA, ny=NULL, col="#D7DBDD", lty="dotted") # GRÁFICO 2: Histograma Global
par(mar = c(8, 5, 4, 2))
plot(h_base,
main = "Gráfica N°2: Distribución Global de Temperatura Mínima",
xlab = "Temperatura Mínima (°C)",
ylab = "Total Días",
col = col_gris_azulado, border = "white", axes = FALSE,
ylim = c(0, sum(h_base$counts)))
axis(1, at = round(h_base$breaks, 1), labels = format(round(h_base$breaks, 1), scientific = FALSE), las = 2, cex.axis = 0.7)
axis(2)
grid(nx=NA, ny=NULL, col="#D7DBDD", lty="dotted")h_porc <- h_base
h_porc$counts <- (h_porc$counts / sum(h_porc$counts)) * 100
h_porc$density <- h_porc$counts
# GRÁFICO 3: Porcentajes (Local)
par(mar = c(8, 5, 4, 2))
plot(h_porc,
main = "Gráfica N°3: Distribución Porcentual de Temperatura Mínima",
xlab = "Temperatura Mínima (°C)",
ylab = "Porcentaje (%)",
col = col_gris_azulado, border = "white", axes = FALSE, freq = TRUE,
ylim = c(0, max(h_porc$counts)*1.2))
axis(1, at = round(h_base$breaks, 1), labels = format(round(h_base$breaks, 1), scientific = FALSE), las = 2, cex.axis = 0.7)
axis(2)
text(x = h_base$mids, y = h_porc$counts, label = paste0(round(h_porc$counts, 1), "%"), pos = 3, cex = 0.6, col = col_ejes)
grid(nx=NA, ny=NULL, col="#D7DBDD", lty="dotted") # GRÁFICO 4: Global Porcentual
par(mar = c(8, 5, 4, 2))
plot(h_porc,
main = "Gráfica No.4: Distribución Porcentual Global (T. Mínima)",
xlab = "Temperatura Mínima (°C)",
ylab = "% del Total",
col = col_gris_azulado, border = "white", axes = FALSE, freq = TRUE,
ylim = c(0, 100))
axis(1, at = round(h_base$breaks, 1), labels = format(round(h_base$breaks, 1), scientific = FALSE), las = 2, cex.axis = 0.7)
text(x = h_base$mids, y = h_porc$counts, label = paste0(round(h_porc$counts, 1), "%"), pos = 3, cex = 0.6, col = col_ejes)
axis(2)
abline(h=seq(0,100,20), col="#D7DBDD", lty="dotted")# GRÁFICO 5: Boxplot
par(mar = c(5, 5, 4, 2))
boxplot(Variable, horizontal = TRUE, col = col_gris_azulado,
main = "Gráfica No.5: Diagrama de Caja de Temperatura Mínima",
xlab = "Temperatura Mínima (°C)", outline = TRUE, outpch = 19, outcol = "#C0392B",
boxwex = 0.5, frame.plot = FALSE, xaxt = "n")
eje_x_detallado <- pretty(Variable, n = 20)
axis(1, at = eje_x_detallado, labels = format(eje_x_detallado, scientific = FALSE), cex.axis=0.7, las=2)
grid(nx=NULL, ny=NA, col="lightgray", lty="dotted")# GRÁFICO 6: Ojivas
par(mar = c(5, 5, 4, 8), xpd = TRUE)
x_asc <- c(min(breaks_table), breaks_table[2:length(breaks_table)])
y_asc <- c(0, Ni_asc)
x_desc <- c(min(breaks_table), breaks_table[2:length(breaks_table)])
y_desc <- c(Ni_desc, 0)
x_range <- range(c(x_asc, x_desc))
y_range <- c(0, max(c(y_asc, y_desc)))
col_azul <- "#2E4053"
col_rojo <- "#C0392B"
plot(x_asc, y_asc, type = "o", col = col_azul, lwd=2, pch=19,
main = "Gráfica No.6: Ojivas de Temperatura Mínima",
xlab = "Temperatura Mínima (°C)", ylab = "Frecuencia acumulada",
xlim = x_range, ylim = y_range, axes = FALSE, frame.plot = FALSE, cex.main=0.95)
axis(1, at = round(breaks_table,1), labels = format(round(breaks_table,1), scientific = FALSE), las=2, cex.axis=0.6)
axis(2, at = pretty(y_asc), labels = format(pretty(y_asc), scientific = FALSE))
lines(x_asc, y_desc, type = "o", col = col_rojo, lwd=2, pch=19)
legend("right", legend = c("Ascendente", "Descendente"),
col = c(col_azul, col_rojo), lty = 1, pch = 19, cex = 0.7, lwd=2,
inset = c(-0.15, 0), bty="n")
grid()# CÁLCULO DE INDICADORES
media_val <- mean(Variable)
mediana_val <- median(Variable)
freq_max <- max(TDF_Temp$ni)
modas_calc <- TDF_Temp$MC[TDF_Temp$ni == freq_max]
moda_txt <- paste(round(modas_calc, 2), collapse = ", ")
rango_txt <- paste0("[", round(min(Variable), 2), "; ", round(max(Variable), 2), "]")
varianza_val <- var(Variable)
sd_val <- sd(Variable)
cv_val <- (sd_val / abs(media_val)) * 100
asimetria_val <- skewness(Variable, type = 2)
curtosis_val <- kurtosis(Variable, type = 2)
vals_atipicos <- boxplot.stats(Variable)$out
num_atipicos <- length(vals_atipicos)
status_atipicos <- if(num_atipicos > 0) {
min_out <- min(vals_atipicos)
max_out <- max(vals_atipicos)
paste0(num_atipicos, " [", round(min_out, 2), "; ", round(max_out, 2), "]")
} else {
"0 (Sin atípicos)"
}
df_resumen <- data.frame(
"Variable" = "Temperatura Mínima (°C)",
"Rango" = rango_txt,
"Media" = media_val,
"Mediana" = mediana_val,
"Moda" = moda_txt,
"Varianza" = varianza_val,
"Desv_Std" = sd_val,
"CV_Porc" = cv_val,
"Asimetria" = asimetria_val,
"Curtosis" = curtosis_val,
"Atipicos" = status_atipicos
)
df_resumen %>%
gt() %>%
tab_header(
title = md("**CONCLUSIONES Y ESTADÍSTICOS**"),
subtitle = "Resumen de Indicadores - Estación Antisana"
) %>%
tab_source_note(source_note = "Autor: Grupo 3") %>%
fmt_number(columns = c(Media, Mediana, Varianza, Desv_Std, CV_Porc, Curtosis), decimals = 2) %>%
fmt_number(columns = c(Asimetria), decimals = 4) %>%
cols_label(
Variable = "Variable",
Rango = "Rango Total",
Media = "Media (X̄)",
Mediana = "Mediana (Me)",
Moda = "Moda (Mo)",
Varianza = "Varianza (S²)",
Desv_Std = "Desv. Est. (S)",
CV_Porc = "C.V. (%)",
Asimetria = "Asimetría (As)",
Curtosis = "Curtosis (K)",
Atipicos = "Outliers [Intervalo]"
) %>%
tab_options(
column_labels.background.color = "#2E4053",
table.border.top.color = "black",
table.border.bottom.color = "#2E4053",
column_labels.border.bottom.color = "#2E4053",
data_row.padding = px(8)
) %>%
tab_style(
style = list(cell_text(weight = "bold", color = "white")),
locations = cells_column_labels()
)| CONCLUSIONES Y ESTADÍSTICOS | ||||||||||
| Resumen de Indicadores - Estación Antisana | ||||||||||
| Variable | Rango Total | Media (X̄) | Mediana (Me) | Moda (Mo) | Varianza (S²) | Desv. Est. (S) | C.V. (%) | Asimetría (As) | Curtosis (K) | Outliers [Intervalo] |
|---|---|---|---|---|---|---|---|---|---|---|
| Temperatura Mínima (°C) | [2.65; 10.85] | 8.05 | 8.00 | 7.66 | 1.89 | 1.37 | 17.08 | −0.4377 | 0.61 | 7 [2.65; 4.55] |
| Autor: Grupo 3 | ||||||||||
min_txt <- format(min(Variable), scientific = FALSE)
max_txt <- format(max(Variable), scientific = FALSE)
asimetria_val <- skewness(Variable, type = 2)
if (abs(asimetria_val) > 0.5) {
centro_valor <- format(round(median(Variable), 2), scientific = FALSE)
} else {
centro_valor <- format(round(mean(Variable), 2), scientific = FALSE)
}
sd_txt <- format(round(sd(Variable), 4), scientific = FALSE)
cv_calc <- (sd(Variable) / abs(mean(Variable))) * 100
tipo_homogeneidad <- if(cv_calc > 30) "heterogénea" else "homogénea"
donde_se_concentra <- if(asimetria_val > 0) "parte media baja" else "parte media alta"
outliers_lista <- boxplot.stats(Variable)$out
num_outliers <- length(outliers_lista)
texto_outliers <- if(num_outliers > 0) {
paste0("con la presencia de **", num_outliers, " valores atípicos**")
} else {
"sin valores atípicos significativos"
}
umbral_minima_optima <- 4
juicio_climatico <- if(median(Variable) < umbral_minima_optima) {
"favorable para el equilibrio del ecosistema, indicando descensos térmicos nocturnos suficientes para promover procesos de recongelamiento superficial y mantenimiento de la cobertura nival"
} else {
"preocupante desde la perspectiva glaciológica, evidenciando un calentamiento nocturno que impide el recongelamiento eficaz, acelerando potencialmente la pérdida de masa del glaciar"
}
cat(paste0(
"## Análisis Descriptivo y Climático\n\n",
"La variable **Temperatura Mínima** fluctúa entre **", min_txt, "** y **", max_txt, "** grados Celsius, ",
"y sus valores se encuentran alrededor de **", centro_valor, "** °C. ",
"Presenta una desviación estándar de **", sd_txt, "**, siendo una variable **", tipo_homogeneidad, "** ",
"(CV: ", round(cv_calc, 2), "%), ",
"cuyos valores se concentran en la **", donde_se_concentra, "** de la distribución ",
texto_outliers, "; ",
"**por todo lo anterior, el comportamiento de las mínimas se considera ", juicio_climatico, ".**"
))La variable Temperatura Mínima fluctúa entre 2.65 y 10.85 grados Celsius, y sus valores se encuentran alrededor de 8.05 °C. Presenta una desviación estándar de 1.3741, siendo una variable homogénea (CV: 17.08%), cuyos valores se concentran en la parte media alta de la distribución con la presencia de 7 valores atípicos; por todo lo anterior, el comportamiento de las mínimas se considera preocupante desde la perspectiva glaciológica, evidenciando un calentamiento nocturno que impide el recongelamiento eficaz, acelerando potencialmente la pérdida de masa del glaciar.