El presente informe estadístico analiza la variable Temperatura Máxima registrada en la estación meteorológica del Antisana.
# 1. LIBRERÍAS Y CARGA DE DATOS
library(readxl)
library(dplyr)
library(gt)
library(e1071)
# Carga de datos
Datos_Brutos <- read.csv("C:\\Users\\User\\Downloads\\datos_clima.antisana.csv", check.names = FALSE)
colnames(Datos_Brutos) <- trimws(colnames(Datos_Brutos))
# Selección y limpieza
Datos <- Datos_Brutos %>%
select(any_of(c("Date", "Max Temperature"))) %>%
mutate(Variable_Analisis = as.numeric(gsub(",", ".", as.character(`Max Temperature`))))
Variable <- na.omit(Datos$Variable_Analisis)
Variable <- Variable[Variable > -50 & Variable < 100]
if(length(Variable) == 0) {
stop("ERROR: No hay datos válidos en la variable seleccionada.")
}
# 2. CÁLCULOS MATEMÁTICOS PARA LA TABLA
N <- length(Variable)
min_val <- min(Variable)
max_val <- max(Variable)
Rango <- max_val - min_val
K <- floor(1 + 3.322 * log10(N))
Amplitud <- Rango / K
breaks_table <- seq(min_val, max_val, length.out = K + 1)
breaks_table[length(breaks_table)] <- max_val + 0.0001
lim_inf_table <- breaks_table[1:K]
lim_sup_table <- breaks_table[2:(K+1)]
MC <- (lim_inf_table + lim_sup_table) / 2
ni <- numeric(K)
for (i in 1:K) {
if (i < K) {
ni[i] <- length(Variable[Variable >= lim_inf_table[i] & Variable < lim_sup_table[i]])
} else {
ni[i] <- length(Variable[Variable >= lim_inf_table[i] & Variable <= lim_sup_table[i]])
}
}
hi <- (ni / sum(ni)) * 100
Ni_asc <- cumsum(ni)
Ni_desc <- rev(cumsum(rev(ni)))
Hi_asc <- cumsum(hi)
Hi_desc <- rev(cumsum(rev(hi)))
TDF_Temp <- data.frame(
Li = round(lim_inf_table, 2),
Ls = round(lim_sup_table, 2),
MC = round(MC, 2),
ni = ni,
hi = round(hi, 2),
Ni_asc = Ni_asc,
Ni_desc = Ni_desc,
Hi_asc = round(Hi_asc, 2),
Hi_desc = round(Hi_desc, 2)
)A continuación se presenta la tabla de distribución de frecuencias obtenida.
# Totales
totales <- c("TOTAL", "-", "-", sum(ni), round(sum(hi), 2), "-", "-", "-", "-")
TDF_Char <- TDF_Temp %>% mutate(across(everything(), as.character))
TDF_Final <- rbind(TDF_Char, totales)
TDF_Final %>%
gt() %>%
tab_header(
title = md("**DISTRIBUCIÓN DE FRECUENCIAS - ANTISANA**"),
subtitle = md("Variable: **Temperatura Máxima (°C)**")
) %>%
tab_source_note(source_note = "Fuente: Datos Meteorológicos Antisana") %>%
cols_label(
Li = "Lím. Inf", Ls = "Lím. Sup", MC = "Marca Clase (Xi)",
ni = "ni", hi = "hi (%)",
Ni_asc = "Ni (Asc)", Ni_desc = "Ni (Desc)",
Hi_asc = "Hi (Asc)", Hi_desc = "Hi (Desc)"
) %>%
cols_align(align = "center", columns = everything()) %>%
tab_style(
style = list(cell_fill(color = "#2E4053"), cell_text(color = "white", weight = "bold")),
locations = cells_title()
) %>%
tab_style(
style = list(cell_fill(color = "#F2F3F4"), cell_text(weight = "bold", color = "#2E4053")),
locations = cells_column_labels()
) %>%
tab_options(
table.border.top.color = "#2E4053",
table.border.bottom.color = "#2E4053",
column_labels.border.bottom.color = "#2E4053",
data_row.padding = px(6)
)| DISTRIBUCIÓN DE FRECUENCIAS - ANTISANA | ||||||||
| Variable: Temperatura Máxima (°C) | ||||||||
| Lím. Inf | Lím. Sup | Marca Clase (Xi) | ni | hi (%) | Ni (Asc) | Ni (Desc) | Hi (Asc) | Hi (Desc) |
|---|---|---|---|---|---|---|---|---|
| 10.32 | 11.82 | 11.07 | 26 | 7.1 | 26 | 366 | 7.1 | 100 |
| 11.82 | 13.31 | 12.56 | 60 | 16.39 | 86 | 340 | 23.5 | 92.9 |
| 13.31 | 14.81 | 14.06 | 71 | 19.4 | 157 | 280 | 42.9 | 76.5 |
| 14.81 | 16.31 | 15.56 | 60 | 16.39 | 217 | 209 | 59.29 | 57.1 |
| 16.31 | 17.8 | 17.06 | 62 | 16.94 | 279 | 149 | 76.23 | 40.71 |
| 17.8 | 19.3 | 18.55 | 44 | 12.02 | 323 | 87 | 88.25 | 23.77 |
| 19.3 | 20.8 | 20.05 | 23 | 6.28 | 346 | 43 | 94.54 | 11.75 |
| 20.8 | 22.29 | 21.55 | 14 | 3.83 | 360 | 20 | 98.36 | 5.46 |
| 22.29 | 23.79 | 23.04 | 6 | 1.64 | 366 | 6 | 100 | 1.64 |
| TOTAL | - | - | 366 | 100 | - | - | - | - |
| Fuente: Datos Meteorológicos Antisana | ||||||||
Esta sección presenta la visualización de la distribución de los datos climáticos.
col_gris_azulado <- "#5D6D7E"
col_ejes <- "#2E4053"
h_base <- hist(Variable, breaks = "Sturges", plot = FALSE)
# GRÁFICO 1: Histograma Absoluto (Local)
par(mar = c(8, 5, 4, 2))
plot(h_base,
main = "Gráfica No.1: Distribución de Temperatura Máxima en Antisana",
xlab = "Temperatura Máxima (°C)",
ylab = "Frecuencia Absoluta (Días)",
col = col_gris_azulado, border = "white", axes = FALSE,
ylim = c(0, max(h_base$counts) * 1.1))
axis(1, at = round(h_base$breaks, 1), labels = format(round(h_base$breaks, 1), scientific = FALSE), las = 2, cex.axis = 0.7)
axis(2)
grid(nx=NA, ny=NULL, col="#D7DBDD", lty="dotted") # GRÁFICO 2: Histograma Global
par(mar = c(8, 5, 4, 2))
plot(h_base,
main = "Gráfica N°2: Distribución Global de Temperatura Máxima",
xlab = "Temperatura Máxima (°C)",
ylab = "Total Días",
col = col_gris_azulado, border = "white", axes = FALSE,
ylim = c(0, sum(h_base$counts)))
axis(1, at = round(h_base$breaks, 1), labels = format(round(h_base$breaks, 1), scientific = FALSE), las = 2, cex.axis = 0.7)
axis(2)
grid(nx=NA, ny=NULL, col="#D7DBDD", lty="dotted")h_porc <- h_base
h_porc$counts <- (h_porc$counts / sum(h_porc$counts)) * 100
h_porc$density <- h_porc$counts
# GRÁFICO 3: Porcentajes (Local)
par(mar = c(8, 5, 4, 2))
plot(h_porc,
main = "Gráfica N°3: Distribución Porcentual de Temperatura Máxima",
xlab = "Temperatura Máxima (°C)",
ylab = "Porcentaje (%)",
col = col_gris_azulado, border = "white", axes = FALSE, freq = TRUE,
ylim = c(0, max(h_porc$counts)*1.2))
axis(1, at = round(h_base$breaks, 1), labels = format(round(h_base$breaks, 1), scientific = FALSE), las = 2, cex.axis = 0.7)
axis(2)
text(x = h_base$mids, y = h_porc$counts, label = paste0(round(h_porc$counts, 1), "%"), pos = 3, cex = 0.6, col = col_ejes)
grid(nx=NA, ny=NULL, col="#D7DBDD", lty="dotted") # GRÁFICO 4: Global Porcentual
par(mar = c(8, 5, 4, 2))
plot(h_porc,
main = "Gráfica No.4: Distribución Porcentual Global (Temperatura)",
xlab = "Temperatura Máxima (°C)",
ylab = "% del Total",
col = col_gris_azulado, border = "white", axes = FALSE, freq = TRUE,
ylim = c(0, 100))
axis(1, at = round(h_base$breaks, 1), labels = format(round(h_base$breaks, 1), scientific = FALSE), las = 2, cex.axis = 0.7)
text(x = h_base$mids, y = h_porc$counts, label = paste0(round(h_porc$counts, 1), "%"), pos = 3, cex = 0.6, col = col_ejes)
axis(2)
abline(h=seq(0,100,20), col="#D7DBDD", lty="dotted")# GRÁFICO 5: Boxplot
par(mar = c(5, 5, 4, 2))
boxplot(Variable, horizontal = TRUE, col = col_gris_azulado,
main = "Gráfica No.5: Diagrama de Caja de Temperatura Máxima (Boxplot)",
xlab = "Temperatura Máxima (°C)", outline = TRUE, outpch = 19, outcol = "#C0392B",
boxwex = 0.5, frame.plot = FALSE, xaxt = "n")
eje_x_detallado <- pretty(Variable, n = 20)
axis(1, at = eje_x_detallado, labels = format(eje_x_detallado, scientific = FALSE), cex.axis=0.7, las=2)
grid(nx=NULL, ny=NA, col="lightgray", lty="dotted")# GRÁFICO 6: Ojivas
par(mar = c(5, 5, 4, 8), xpd = TRUE)
x_asc <- c(min(breaks_table), breaks_table[2:length(breaks_table)])
y_asc <- c(0, Ni_asc)
x_desc <- c(min(breaks_table), breaks_table[2:length(breaks_table)])
y_desc <- c(Ni_desc, 0)
x_range <- range(c(x_asc, x_desc))
y_range <- c(0, max(c(y_asc, y_desc)))
col_azul <- "#2E4053"
col_rojo <- "#C0392B"
plot(x_asc, y_asc, type = "o", col = col_azul, lwd=2, pch=19,
main = "Gráfica No.6: Ojivas Ascendente y Descendente de Temperatura Máxima",
xlab = "Temperatura Máxima (°C)", ylab = "Frecuencia acumulada",
xlim = x_range, ylim = y_range, axes = FALSE, frame.plot = FALSE, cex.main=0.95)
axis(1, at = round(breaks_table,1), labels = format(round(breaks_table,1), scientific = FALSE), las=2, cex.axis=0.6)
axis(2, at = pretty(y_asc), labels = format(pretty(y_asc), scientific = FALSE))
lines(x_asc, y_desc, type = "o", col = col_rojo, lwd=2, pch=19)
legend("right", legend = c("Ascendente", "Descendente"),
col = c(col_azul, col_rojo), lty = 1, pch = 19, cex = 0.7, lwd=2,
inset = c(-0.15, 0), bty="n")
grid()# CÁLCULO DE INDICADORES
media_val <- mean(Variable)
mediana_val <- median(Variable)
freq_max <- max(TDF_Temp$ni)
modas_calc <- TDF_Temp$MC[TDF_Temp$ni == freq_max]
moda_txt <- paste(round(modas_calc, 2), collapse = ", ")
rango_txt <- paste0("[", round(min(Variable), 2), "; ", round(max(Variable), 2), "]")
varianza_val <- var(Variable)
sd_val <- sd(Variable)
cv_val <- (sd_val / abs(media_val)) * 100
asimetria_val <- skewness(Variable, type = 2)
curtosis_val <- kurtosis(Variable, type = 2)
vals_atipicos <- boxplot.stats(Variable)$out
num_atipicos <- length(vals_atipicos)
status_atipicos <- if(num_atipicos > 0) {
min_out <- min(vals_atipicos)
max_out <- max(vals_atipicos)
paste0(num_atipicos, " [", round(min_out, 2), "; ", round(max_out, 2), "]")
} else {
"0 (Sin atípicos)"
}
df_resumen <- data.frame(
"Variable" = "Temperatura Máxima (°C)",
"Rango" = rango_txt,
"Media" = media_val,
"Mediana" = mediana_val,
"Moda" = moda_txt,
"Varianza" = varianza_val,
"Desv_Std" = sd_val,
"CV_Porc" = cv_val,
"Asimetria" = asimetria_val,
"Curtosis" = curtosis_val,
"Atipicos" = status_atipicos
)
df_resumen %>%
gt() %>%
tab_header(
title = md("**CONCLUSIONES Y ESTADÍSTICOS**"),
subtitle = "Resumen de Indicadores - Estación Antisana"
) %>%
tab_source_note(source_note = "Autor: Grupo 3") %>%
fmt_number(columns = c(Media, Mediana, Varianza, Desv_Std, CV_Porc, Curtosis), decimals = 2) %>%
fmt_number(columns = c(Asimetria), decimals = 4) %>%
cols_label(
Variable = "Variable",
Rango = "Rango Total",
Media = "Media (X̄)",
Mediana = "Mediana (Me)",
Moda = "Moda (Mo)",
Varianza = "Varianza (S²)",
Desv_Std = "Desv. Est. (S)",
CV_Porc = "C.V. (%)",
Asimetria = "Asimetría (As)",
Curtosis = "Curtosis (K)",
Atipicos = "Outliers [Intervalo]"
) %>%
tab_options(
column_labels.background.color = "#2E4053",
table.border.top.color = "black",
table.border.bottom.color = "#2E4053",
column_labels.border.bottom.color = "#2E4053",
data_row.padding = px(8)
) %>%
tab_style(
style = list(cell_text(weight = "bold", color = "white")),
locations = cells_column_labels()
)| CONCLUSIONES Y ESTADÍSTICOS | ||||||||||
| Resumen de Indicadores - Estación Antisana | ||||||||||
| Variable | Rango Total | Media (X̄) | Mediana (Me) | Moda (Mo) | Varianza (S²) | Desv. Est. (S) | C.V. (%) | Asimetría (As) | Curtosis (K) | Outliers [Intervalo] |
|---|---|---|---|---|---|---|---|---|---|---|
| Temperatura Máxima (°C) | [10.32; 23.79] | 15.74 | 15.51 | 14.06 | 8.22 | 2.87 | 18.22 | 0.3906 | −0.54 | 0 (Sin atípicos) |
| Autor: Grupo 3 | ||||||||||
min_txt <- format(min(Variable), scientific = FALSE)
max_txt <- format(max(Variable), scientific = FALSE)
asimetria_val <- skewness(Variable, type = 2)
if (abs(asimetria_val) > 0.5) {
centro_valor <- format(round(median(Variable), 2), scientific = FALSE)
} else {
centro_valor <- format(round(mean(Variable), 2), scientific = FALSE)
}
sd_txt <- format(round(sd(Variable), 4), scientific = FALSE)
cv_calc <- (sd(Variable) / abs(mean(Variable))) * 100
tipo_homogeneidad <- if(cv_calc > 30) "heterogénea" else "homogénea"
donde_se_concentra <- if(asimetria_val > 0) "parte media baja" else "parte media alta"
outliers_lista <- boxplot.stats(Variable)$out
num_outliers <- length(outliers_lista)
texto_outliers <- if(num_outliers > 0) {
paste0("con la presencia de **", num_outliers, " valores atípicos**")
} else {
"sin valores atípicos significativos"
}
umbral_temp_confort <- 16
juicio_climatico <- if(median(Variable) < umbral_temp_confort) {
"característico de un régimen de páramo estable, donde las temperaturas máximas se mantienen moderadas, favoreciendo la conservación de los cuerpos de agua congelados y la biodiversidad típica de altura (condiciones normales)"
} else {
"inusualmente cálido para el promedio histórico, sugiriendo periodos de alta radiación o anomalías térmicas que podrían acelerar procesos de deshielo o estrés hídrico en la reserva"
}
cat(paste0(
"## Análisis Descriptivo y Climático\n\n",
"La variable **Temperatura Máxima** fluctúa entre **", min_txt, "** y **", max_txt, "** grados Celsius, ",
"y sus valores se encuentran alrededor de **", centro_valor, "** °C. ",
"Presenta una desviación estándar de **", sd_txt, "**, siendo una variable **", tipo_homogeneidad, "** ",
"(CV: ", round(cv_calc, 2), "%), ",
"cuyos valores se concentran en la **", donde_se_concentra, "** de la distribución ",
texto_outliers, "; ",
"**por todo lo anterior, el comportamiento térmico se considera ", juicio_climatico, ".**"
))La variable Temperatura Máxima fluctúa entre 10.32 y 23.79 grados Celsius, y sus valores se encuentran alrededor de 15.74 °C. Presenta una desviación estándar de 2.8675, siendo una variable homogénea (CV: 18.22%), cuyos valores se concentran en la parte media baja de la distribución sin valores atípicos significativos; por todo lo anterior, el comportamiento térmico se considera característico de un régimen de páramo estable, donde las temperaturas máximas se mantienen moderadas, favoreciendo la conservación de los cuerpos de agua congelados y la biodiversidad típica de altura (condiciones normales).