Time: ~30 minutes
Goal: Practice one-way ANOVA analysis from start to finish using real public health data
Learning Objectives:
Structure:
Submission: Upload your completed .Rmd file and published to Brightspace by the end of class.
Why ANOVA? We have one continuous outcome (SBP) and one categorical predictor with THREE groups (BMI category). Using multiple t-tests would inflate our Type I error rate.
# Load necessary libraries
library(tidyverse) # For data manipulation and visualization
library(knitr) # For nice tables
library(car) # For Levene's test
library(NHANES) # NHANES dataset
# Load the NHANES data
data(NHANES)Create analysis dataset:
# Set seed for reproducibility
set.seed(553)
# Create BMI categories and prepare data
bp_bmi_data <- NHANES %>%
filter(Age >= 18 & Age <= 65) %>% # Adults 18-65
filter(!is.na(BPSysAve) & !is.na(BMI)) %>%
mutate(
bmi_category = case_when(
BMI < 25 ~ "Normal",
BMI >= 25 & BMI < 30 ~ "Overweight",
BMI >= 30 ~ "Obese",
TRUE ~ NA_character_
),
bmi_category = factor(bmi_category,
levels = c("Normal", "Overweight", "Obese"))
) %>%
filter(!is.na(bmi_category)) %>%
select(ID, Age, Gender, BPSysAve, BMI, bmi_category)
# Display first few rows
head(bp_bmi_data) %>%
kable(caption = "Blood Pressure and BMI Dataset (first 6 rows)")| ID | Age | Gender | BPSysAve | BMI | bmi_category |
|---|---|---|---|---|---|
| 51624 | 34 | male | 113 | 32.22 | Obese |
| 51624 | 34 | male | 113 | 32.22 | Obese |
| 51624 | 34 | male | 113 | 32.22 | Obese |
| 51630 | 49 | female | 112 | 30.57 | Obese |
| 51647 | 45 | female | 118 | 27.24 | Overweight |
| 51647 | 45 | female | 118 | 27.24 | Overweight |
##
## Normal Overweight Obese
## 1939 1937 2150
Interpretation: We have 6026 adults with complete BP and BMI data across three BMI categories.
# Calculate summary statistics by BMI category
summary_stats <- bp_bmi_data %>%
group_by(bmi_category) %>%
summarise(
n = n(),
Mean = mean(BPSysAve),
SD = sd(BPSysAve),
Median = median(BPSysAve),
Min = min(BPSysAve),
Max = max(BPSysAve)
)
summary_stats %>%
kable(digits = 2,
caption = "Descriptive Statistics: Systolic BP by BMI Category")| bmi_category | n | Mean | SD | Median | Min | Max |
|---|---|---|---|---|---|---|
| Normal | 1939 | 114.23 | 15.01 | 113 | 78 | 221 |
| Overweight | 1937 | 118.74 | 13.86 | 117 | 83 | 186 |
| Obese | 2150 | 121.62 | 15.27 | 120 | 82 | 226 |
Observation: The mean SBP appears to increase from Normal (114.2) to Overweight (118.7) to Obese (121.6).
# Create boxplots with individual points
ggplot(bp_bmi_data,
aes(x = bmi_category, y = BPSysAve, fill = bmi_category)) +
geom_boxplot(alpha = 0.7, outlier.shape = NA) +
geom_jitter(width = 0.2, alpha = 0.1, size = 0.5) +
scale_fill_brewer(palette = "Set2") +
labs(
title = "Systolic Blood Pressure by BMI Category",
subtitle = "NHANES Data, Adults aged 18-65",
x = "BMI Category",
y = "Systolic Blood Pressure (mmHg)",
fill = "BMI Category"
) +
theme_minimal(base_size = 12) +
theme(legend.position = "none")What the plot tells us:
Null Hypothesis (H₀): μ_Normal = μ_Overweight =
μ_Obese
(All three population means are equal)
Alternative Hypothesis (H₁): At least one population mean differs from the others
Significance level: α = 0.05
# Fit the one-way ANOVA model
anova_model <- aov(BPSysAve ~ bmi_category, data = bp_bmi_data)
# Display the ANOVA table
summary(anova_model)## Df Sum Sq Mean Sq F value Pr(>F)
## bmi_category 2 56212 28106 129.2 <2e-16 ***
## Residuals 6023 1309859 217
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Interpretation:
Why do we need this? The F-test tells us that groups differ, but not which groups differ. Tukey’s Honest Significant Difference controls the family-wise error rate for multiple pairwise comparisons.
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = BPSysAve ~ bmi_category, data = bp_bmi_data)
##
## $bmi_category
## diff lwr upr p adj
## Overweight-Normal 4.507724 3.397134 5.618314 0
## Obese-Normal 7.391744 6.309024 8.474464 0
## Obese-Overweight 2.884019 1.801006 3.967033 0
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = BPSysAve ~ bmi_category, data = bp_bmi_data)
##
## $bmi_category
## diff lwr upr p adj
## Overweight-Normal 4.507724 3.397134 5.618314 0
## Obese-Normal 7.391744 6.309024 8.474464 0
## Obese-Overweight 2.884019 1.801006 3.967033 0
Interpretation:
| Comparison | Mean Diff | 95% CI | p-value | Significant? |
|---|---|---|---|---|
| Overweight - Normal | 4.51 | [3.4, 5.62] | 3.82e-12 | Yes |
| Obese - Normal | 7.39 | [6.31, 8.47] | < 0.001 | Yes |
| Obese - Overweight | 2.88 | [1.8, 3.97] | 1.38e-09 | Yes |
Conclusion: All three pairwise comparisons are statistically significant. Obese adults have higher SBP than overweight adults, who in turn have higher SBP than normal-weight adults.
# Extract sum of squares from ANOVA table
anova_summary <- summary(anova_model)[[1]]
ss_treatment <- anova_summary$`Sum Sq`[1]
ss_total <- sum(anova_summary$`Sum Sq`)
# Calculate eta-squared
eta_squared <- ss_treatment / ss_total
cat("Eta-squared (η²):", round(eta_squared, 4), "\n")## Eta-squared (η²): 0.0411
## Percentage of variance explained: 4.11 %
Interpretation: BMI category explains 4.11% of the variance in systolic BP.
While statistically significant, the practical effect is modest—BMI category alone doesn’t explain most of the variation in blood pressure.
ANOVA Assumptions:
Diagnostic Plot Interpretation:
# Levene's test for homogeneity of variance
levene_test <- leveneTest(BPSysAve ~ bmi_category, data = bp_bmi_data)
print(levene_test)## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 2.7615 0.06328 .
## 6023
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Levene’s Test Interpretation:
Overall Assessment: With n > 2000, ANOVA is robust to minor violations. Our assumptions are reasonably satisfied.
Example Results Section:
We conducted a one-way ANOVA to examine whether mean systolic blood pressure (SBP) differs across BMI categories (Normal, Overweight, Obese) among 6,026 adults aged 18-65 from NHANES. Descriptive statistics showed mean SBP of 114.2 mmHg (SD = 15) for normal weight, 118.7 mmHg (SD = 13.9) for overweight, and 121.6 mmHg (SD = 15.3) for obese individuals.
The ANOVA revealed a statistically significant difference in mean SBP across BMI categories, F(2, 6023) = 129.24, p < 0.001. Tukey’s HSD post-hoc tests indicated that all pairwise comparisons were significant (p < 0.05): obese adults had on average 7.4 mmHg higher SBP than normal-weight adults, and 2.9 mmHg higher than overweight adults.
The effect size (η² = 0.041) indicates that BMI category explains 4.1% of the variance in systolic blood pressure, representing a small practical effect. These findings support the well-established relationship between higher BMI and elevated blood pressure, though other factors account for most of the variation in SBP.
Your Task: Complete the same 9-step analysis workflow you just practiced, but now on a different outcome and predictor.
# Prepare the dataset
set.seed(553)
mental_health_data <- NHANES %>%
filter(Age >= 18) %>%
filter(!is.na(DaysMentHlthBad) & !is.na(PhysActive)) %>%
mutate(
activity_level = case_when(
PhysActive == "No" ~ "None",
PhysActive == "Yes" & !is.na(PhysActiveDays) & PhysActiveDays < 3 ~ "Moderate",
PhysActive == "Yes" & !is.na(PhysActiveDays) & PhysActiveDays >= 3 ~ "Vigorous",
TRUE ~ NA_character_
),
activity_level = factor(activity_level,
levels = c("None", "Moderate", "Vigorous"))
) %>%
filter(!is.na(activity_level)) %>%
select(ID, Age, Gender, DaysMentHlthBad, PhysActive, activity_level)
# YOUR TURN: Display the first 6 rows and check sample sizes
head(mental_health_data)## # A tibble: 6 × 6
## ID Age Gender DaysMentHlthBad PhysActive activity_level
## <int> <int> <fct> <int> <fct> <fct>
## 1 51624 34 male 15 No None
## 2 51624 34 male 15 No None
## 3 51624 34 male 15 No None
## 4 51630 49 female 10 No None
## 5 51647 45 female 3 Yes Vigorous
## 6 51647 45 female 3 Yes Vigorous
## # A tibble: 3 × 2
## activity_level n
## <fct> <int>
## 1 None 3139
## 2 Moderate 768
## 3 Vigorous 1850
YOUR TURN - Answer these questions:
# YOUR TURN: Calculate summary statistics by activity level
# Hint: Follow the same structure as the guided example
# Variables to summarize: n, Mean, SD, Median, Min, Max
desc_stats <- mental_health_data %>%
group_by(activity_level) %>%
summarise(
n = n(),
Mean = mean(DaysMentHlthBad, na.rm = TRUE),
SD = sd(DaysMentHlthBad, na.rm = TRUE),
Median = median(DaysMentHlthBad, na.rm = TRUE),
Min = min(DaysMentHlthBad, na.rm = TRUE),
Max = max(DaysMentHlthBad, na.rm = TRUE),
.groups = "drop"
)
desc_stats## # A tibble: 3 × 7
## activity_level n Mean SD Median Min Max
## <fct> <int> <dbl> <dbl> <dbl> <int> <int>
## 1 None 3139 5.08 9.01 0 0 30
## 2 Moderate 768 3.81 6.87 0 0 30
## 3 Vigorous 1850 3.54 7.17 0 0 30
YOUR TURN - Interpret:
# YOUR TURN: Create boxplots comparing DaysMentHlthBad across activity levels
# Hint: Use the same ggplot code structure as the example
# Change variable names and labels appropriately
mental_health_data %>%
ggplot(aes(x = activity_level, y = DaysMentHlthBad)) +
geom_boxplot() +
labs(
title = "Days of Poor Mental Health by Physical Activity Level",
x = "Activity level",
y = "DaysMentHlthBad"
) +
theme_minimal()YOUR TURN - Describe what you see:
YOUR TURN - Write the hypotheses:
Null Hypothesis (H₀): The mean number of poor mental health days is equal across all three physical activity levels. Alternative Hypothesis (H₁): At least one activity level has a different mean number of poor mental health days.
Significance level: α =
# YOUR TURN: Fit the ANOVA model
# Outcome: DaysMentHlthBad
# Predictor: activity_level
anova_model <- aov(DaysMentHlthBad ~ activity_level, data = mental_health_data)
summary(anova_model)## Df Sum Sq Mean Sq F value Pr(>F)
## activity_level 2 3109 1554.6 23.17 9.52e-11 ***
## Residuals 5754 386089 67.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
YOUR TURN - Extract and interpret the results:
YOUR TURN - Complete the table:
| Comparison | Mean Difference | 95% CI Lower | 95% CI Upper | p-value | Significant? |
|---|---|---|---|---|---|
| Moderate - None | -1.27 | -2.05 | -0.50 | 0.00034 | Yes |
| Vigorous - None | -1.55 | -2.11 | -0.98 | < 0.001 | Yes |
| Vigorous - Moderate | -0.27 | -1.10 | 0.55 | 0.716 | No |
Interpretation:
Which specific groups differ significantly?
Tukey post-hoc tests showed that participants with no physical activity had significantly more poor mental health days than both the moderate activity group (p = 0.00034) and the vigorous activity group (p < 0.001). However, there was no significant difference between the moderate and vigorous activity groups (p = 0.716). This suggests that engaging in any level of physical activity is associated with better mental health compared to being inactive. —
# YOUR TURN: Calculate eta-squared
# Hint: Extract Sum Sq from the ANOVA summary
anova_tab <- summary(anova_model)[[1]]
SS_between <- anova_tab["activity_level", "Sum Sq"]
SS_total <- sum(anova_tab[, "Sum Sq"])
eta_sq <- SS_between / SS_total
eta_sq## [1] 0.007988564
YOUR TURN - Interpret:
YOUR TURN - Evaluate each plot:
# YOUR TURN: Conduct Levene's test
leveneTest(DaysMentHlthBad ~ activity_level, data = mental_health_data)## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 23.168 9.517e-11 ***
## 5754
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
YOUR TURN - Overall assessment:
YOUR TURN - Write a complete 2-3 paragraph results section:
Include: 1. Sample description and descriptive statistics 2. F-test results 3. Post-hoc comparisons (if applicable) 4. Effect size interpretation 5. Public health significance
Your Results Section:
A one-way ANOVA was conducted to examine whether the mean number of poor mental health days differed across three physical activity levels (None, Moderate, Vigorous) among adults aged 18 and older. The final sample included 3139 participants in the None group, 768 in the Moderate group, and 1850 in the Vigorous group. Descriptive stats showed that the None group had the highest mean number of poor mental health days (M = 5.08, SD = 9.01), followed by the Moderate group (M = 3.81, SD = 6.87), and the Vigorous group (M = 3.54, SD = 7.17). The ANOVA revealed a statistically significant difference in mean DaysMentHlthBad across activity levels, F(2, 5754) = 23.17, p < 0.001. Post-hoc comparisons using Tukey’s HSD test indicated that participants with no physical activity reported significantly more poor mental health days than both the moderate activity group (mean difference = −1.27, p = 0.00034) and the vigorous activity group (mean difference = −1.55, p < 0.001). There was no significant difference between the moderate and vigorous groups (p = 0.716). The effect size for this analysis was small (η² = 0.008), indicating that physical activity level explained only about 0.8% of the variance in poor mental health days. Although statistically significant, this suggests that many other factors contribute to mental health outcomes beyond physical activity alone. These findings still support public health recommendations promoting physical activity as one potential strategy for improving mental well-being.
1. How does the effect size help you understand the practical vs. statistical significance?
Effect size helps distinguish between results that are statistically significant and those that are practically meaningful. In this analysis, the p-value was very small due to the large sample size, but the effect size (η² = 0.008) was small. This indicates that although physical activity is significantly related to mental health, it explains only a small portion of overall mental health variation.
2. Why is it important to check ANOVA assumptions? What might happen if they’re violated?
ANOVA assumptions ensure that the statistical results are valid and reliable. If assumptions such as normality or equal variances are violated, the p-values and conclusions may be inaccurate. Checking assumptions helps determine whether ANOVA is appropriate or whether alternative methods should be considered.
3. In public health practice, when might you choose to use ANOVA?
ANOVA is useful in public health whenever we need to compare the means of a continuous outcome across three or more groups. Examples include comparing blood pressure across BMI categories, comparing depression scores across income groups, or comparing hospital readmission rates across different treatment programs.
4. What was the most challenging part of this lab activity?
Before submitting, verify you have:
To submit: Upload both your .Rmd file and the HTML output to Brightspace.
Lab completed on: February 05, 2026
Total Points: 15
| Category | Criteria | Points | Notes |
|---|---|---|---|
| Code Execution | All code chunks run without errors | 4 | - Deduct 1 pt per major error - Deduct 0.5 pt per minor warning |
| Completion | All “YOUR TURN” sections attempted | 4 | - Part B Steps 1-9 completed - All fill-in-the-blank answered - Tukey table filled in |
| Interpretation | Correct statistical interpretation | 4 | - Hypotheses correctly stated (1 pt) - ANOVA results interpreted (1 pt) - Post-hoc results interpreted (1 pt) - Assumptions evaluated (1 pt) |
| Results Section | Professional, complete write-up | 3 | - Includes descriptive stats (1 pt) - Reports F-test & post-hoc (1 pt) - Effect size & significance (1 pt) |
Code Execution (4 points):
Completion (4 points):
Interpretation (4 points):
Results Section (3 points):