bike4 <- read.delim("bike_sharing_data.txt")
bike2 <- read.table("bike_sharing_data.txt", sep="\t", header=TRUE)
bike1 <- read.table("bike_sharing_data.csv", sep=",", header=TRUE)
bike3 <- read.csv("bike_sharing_data.csv")
bike_sharing_data <- read.csv("bike_sharing_data.csv")
dim(bike_sharing_data)
## [1] 17379 13
str(bike_sharing_data$humidity)
## chr [1:17379] "81" "80" "80" "75" "75" "75" "80" "86" "75" "76" "76" "81" ...
bike_sharing_data[6251, "season"]
## [1] 4
table(bike_sharing_data$season)
##
## 1 2 3 4
## 4242 4409 4496 4232
Note: In the dataset, the season
variable is coded as follows: 1 = Fall, 2 = Spring, 3 = Summer, 4 =
Winter.
df <- data.frame(season = c("winter","summer","winter"), wind = c(10, 30, 25))
df[df$season == "winter" & df$wind > 20, ]
## season wind
## 3 winter 25
df[df$season %in% c("winter", "fall"), ]
## season wind
## 1 winter 10
## 3 winter 25
count_high_wind <- sum(
bike_sharing_data$windspeed >= 40 & bike_sharing_data$windspeed <= 57 &
bike_sharing_data$season %in% c(1, 4),
na.rm = TRUE
)
count_high_wind
## [1] 46