Time: ~30 minutes
Goal: Practice one-way ANOVA analysis from start to finish using real public health data
Learning Objectives:
Structure:
Submission: Upload your completed .Rmd file and published to Brightspace by the end of class.
Why ANOVA? We have one continuous outcome (SBP) and one categorical predictor with THREE groups (BMI category). Using multiple t-tests would inflate our Type I error rate.
# Load necessary libraries
library(tidyverse) # For data manipulation and visualization
library(knitr) # For nice tables
library(car) # For Levene's test
library(NHANES) # NHANES dataset
library(dplyr)
# Load the NHANES data
data(NHANES)Create analysis dataset:
# Set seed for reproducibility
set.seed(553)
# Create BMI categories and prepare data
bp_bmi_data <- NHANES %>%
filter(Age >= 18 & Age <= 65) %>% # Adults 18-65
filter(!is.na(BPSysAve) & !is.na(BMI)) %>%
mutate(
bmi_category = case_when(
BMI < 25 ~ "Normal",
BMI >= 25 & BMI < 30 ~ "Overweight",
BMI >= 30 ~ "Obese",
TRUE ~ NA_character_
),
bmi_category = factor(bmi_category,
levels = c("Normal", "Overweight", "Obese"))
) %>%
filter(!is.na(bmi_category)) %>%
select(ID, Age, Gender, BPSysAve, BMI, bmi_category)
# Display first few rows
head(bp_bmi_data) %>%
kable(caption = "Blood Pressure and BMI Dataset (first 6 rows)")| ID | Age | Gender | BPSysAve | BMI | bmi_category |
|---|---|---|---|---|---|
| 51624 | 34 | male | 113 | 32.22 | Obese |
| 51624 | 34 | male | 113 | 32.22 | Obese |
| 51624 | 34 | male | 113 | 32.22 | Obese |
| 51630 | 49 | female | 112 | 30.57 | Obese |
| 51647 | 45 | female | 118 | 27.24 | Overweight |
| 51647 | 45 | female | 118 | 27.24 | Overweight |
##
## Normal Overweight Obese
## 1939 1937 2150
Interpretation: We have 6026 adults with complete BP and BMI data across three BMI categories.
# Calculate summary statistics by BMI category
summary_stats <- bp_bmi_data %>%
group_by(bmi_category) %>%
summarise(
n = n(),
Mean = mean(BPSysAve),
SD = sd(BPSysAve),
Median = median(BPSysAve),
Min = min(BPSysAve),
Max = max(BPSysAve)
)
summary_stats %>%
kable(digits = 2,
caption = "Descriptive Statistics: Systolic BP by BMI Category")| bmi_category | n | Mean | SD | Median | Min | Max |
|---|---|---|---|---|---|---|
| Normal | 1939 | 114.23 | 15.01 | 113 | 78 | 221 |
| Overweight | 1937 | 118.74 | 13.86 | 117 | 83 | 186 |
| Obese | 2150 | 121.62 | 15.27 | 120 | 82 | 226 |
Observation: The mean SBP appears to increase from Normal (114.2) to Overweight (118.7) to Obese (121.6).
# Create boxplots with individual points
ggplot(bp_bmi_data,
aes(x = bmi_category, y = BPSysAve, fill = bmi_category)) +
geom_boxplot(alpha = 0.7, outlier.shape = NA) +
geom_jitter(width = 0.2, alpha = 0.1, size = 0.5) +
scale_fill_brewer(palette = "Set2") +
labs(
title = "Systolic Blood Pressure by BMI Category",
subtitle = "NHANES Data, Adults aged 18-65",
x = "BMI Category",
y = "Systolic Blood Pressure (mmHg)",
fill = "BMI Category"
) +
theme_minimal(base_size = 12) +
theme(legend.position = "none")What the plot tells us:
Null Hypothesis (H₀): μ_Normal = μ_Overweight =
μ_Obese
(All three population means are equal)
Alternative Hypothesis (H₁): At least one population mean differs from the others
Significance level: α = 0.05
# Fit the one-way ANOVA model
anova_model <- aov(BPSysAve ~ bmi_category, data = bp_bmi_data)
# Display the ANOVA table
summary(anova_model)## Df Sum Sq Mean Sq F value Pr(>F)
## bmi_category 2 56212 28106 129.2 <2e-16 ***
## Residuals 6023 1309859 217
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Interpretation:
Why do we need this? The F-test tells us that groups differ, but not which groups differ. Tukey’s Honest Significant Difference controls the family-wise error rate for multiple pairwise comparisons.
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = BPSysAve ~ bmi_category, data = bp_bmi_data)
##
## $bmi_category
## diff lwr upr p adj
## Overweight-Normal 4.507724 3.397134 5.618314 0
## Obese-Normal 7.391744 6.309024 8.474464 0
## Obese-Overweight 2.884019 1.801006 3.967033 0
Interpretation:
| Comparison | Mean Diff | 95% CI | p-value | Significant? |
|---|---|---|---|---|
| Overweight - Normal | 4.51 | [3.4, 5.62] | 1.98e-13 | Yes |
| Obese - Normal | 7.39 | [6.31, 8.47] | < 0.001 | Yes |
| Obese - Overweight | 2.88 | [1.8, 3.97] | 1.38e-09 | Yes |
Conclusion: All three pairwise comparisons are statistically significant. Obese adults have higher SBP than overweight adults, who in turn have higher SBP than normal-weight adults.
# Extract sum of squares from ANOVA table
anova_summary <- summary(anova_model)[[1]]
ss_treatment <- anova_summary$`Sum Sq`[1]
ss_total <- sum(anova_summary$`Sum Sq`)
# Calculate eta-squared
eta_squared <- ss_treatment / ss_total
cat("Eta-squared (η²):", round(eta_squared, 4), "\n")## Eta-squared (η²): 0.0411
## Percentage of variance explained: 4.11 %
Interpretation: BMI category explains 4.11% of the variance in systolic BP.
While statistically significant, the practical effect is modest—BMI category alone doesn’t explain most of the variation in blood pressure.
ANOVA Assumptions:
Diagnostic Plot Interpretation:
# Levene's test for homogeneity of variance
levene_test <- leveneTest(BPSysAve ~ bmi_category, data = bp_bmi_data)
print(levene_test)## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 2.7615 0.06328 .
## 6023
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Levene’s Test Interpretation:
Overall Assessment: With n > 2000, ANOVA is robust to minor violations. Our assumptions are reasonably satisfied.
Example Results Section:
We conducted a one-way ANOVA to examine whether mean systolic blood pressure (SBP) differs across BMI categories (Normal, Overweight, Obese) among 6,026 adults aged 18-65 from NHANES. Descriptive statistics showed mean SBP of 114.2 mmHg (SD = 15) for normal weight, 118.7 mmHg (SD = 13.9) for overweight, and 121.6 mmHg (SD = 15.3) for obese individuals.
The ANOVA revealed a statistically significant difference in mean SBP across BMI categories, F(2, 6023) = 129.24, p < 0.001. Tukey’s HSD post-hoc tests indicated that all pairwise comparisons were significant (p < 0.05): obese adults had on average 7.4 mmHg higher SBP than normal-weight adults, and 2.9 mmHg higher than overweight adults.
The effect size (η² = 0.041) indicates that BMI category explains 4.1% of the variance in systolic blood pressure, representing a small practical effect. These findings support the well-established relationship between higher BMI and elevated blood pressure, though other factors account for most of the variation in SBP.
Your Task: Complete the same 9-step analysis workflow you just practiced, but now on a different outcome and predictor.
# Prepare the dataset
set.seed(553)
mental_health_data <- NHANES %>%
filter(Age >= 18) %>%
filter(!is.na(DaysMentHlthBad) & !is.na(PhysActive)) %>%
mutate(
activity_level = case_when(
PhysActive == "No" ~ "None",
PhysActive == "Yes" & !is.na(PhysActiveDays) & PhysActiveDays < 3 ~ "Moderate",
PhysActive == "Yes" & !is.na(PhysActiveDays) & PhysActiveDays >= 3 ~ "Vigorous",
TRUE ~ NA_character_
),
activity_level = factor(activity_level,
levels = c("None", "Moderate", "Vigorous"))
) %>%
filter(!is.na(activity_level)) %>%
select(ID, Age, Gender, DaysMentHlthBad, PhysActive, activity_level)
# YOUR TURN: Display the first 6 rows and check sample sizes
head(mental_health_data) %>%
kable(caption = "Poor Mental Health and Physical Activity Dataset (first 6 rows)")| ID | Age | Gender | DaysMentHlthBad | PhysActive | activity_level |
|---|---|---|---|---|---|
| 51624 | 34 | male | 15 | No | None |
| 51624 | 34 | male | 15 | No | None |
| 51624 | 34 | male | 15 | No | None |
| 51630 | 49 | female | 10 | No | None |
| 51647 | 45 | female | 3 | Yes | Vigorous |
| 51647 | 45 | female | 3 | Yes | Vigorous |
##
## None Moderate Vigorous
## 3139 768 1850
YOUR TURN - Answer these questions:
# YOUR TURN: Calculate summary statistics by activity level
summary_stats <- mental_health_data %>%
group_by(activity_level) %>%
summarise(
n = n(),
Mean = mean(DaysMentHlthBad),
SD = sd(DaysMentHlthBad),
Median = median(DaysMentHlthBad),
Min = min(DaysMentHlthBad),
Max = max(DaysMentHlthBad)
)
summary_stats %>%
kable(digits = 2,
caption = "Descriptive Statistics: Poor Mental Health by Physical Activity level")| activity_level | n | Mean | SD | Median | Min | Max |
|---|---|---|---|---|---|---|
| None | 3139 | 5.08 | 9.01 | 0 | 0 | 30 |
| Moderate | 768 | 3.81 | 6.87 | 0 | 0 | 30 |
| Vigorous | 1850 | 3.54 | 7.17 | 0 | 0 | 30 |
YOUR TURN - Interpret:
Which group has the highest mean number of bad mental health days? Answer: Group which had None physical activity
Which group has the lowest? Answer: Vigorous group
# YOUR TURN: Create boxplots comparing DaysMentHlthBad across activity levels
ggplot(mental_health_data,
aes(x = activity_level, y = DaysMentHlthBad, fill = activity_level)) +
geom_boxplot(alpha = 0.7, outlier.shape = NA) +
geom_jitter(width = 0.2, alpha = 0.1, size = 0.5) +
scale_fill_brewer(palette = "Set2") +
labs(
title = "Poor Mental Health Days by Physical Activity Level",
subtitle = "NHANES Data, Adults aged 18-65",
x = "Physical Activity Level",
y = "Poor Mental Health Days",
fill = "Activity level"
) +
theme_minimal(base_size = 12) +
theme(legend.position = "none")# Hint: Use the same ggplot code structure as the example
# Change variable names and labels appropriatelyYOUR TURN - Describe what you see:
All three groups have the same median: 0 poor mental health days.That means most people do not have mental health issues.
However, Q3 is highest among those with none physical activity, lower in the moderate activity level groups and lowest among the vigorous activity levels. This means those with vigorous activity level tend to have a fewer poor-mental-helath days.
The boxplots indicate greater variability in poor mental-health days among adults reporting “None” physical activity, as evidenced by a larger interquartile range and wider spread of values compared to the “Moderate” and “Vigorous” groups.
Null Hypothesis (H₀): μ_none = μ_moderate =
μ_vigirous
(All three population means are equal)
Alternative Hypothesis (H₁): At least one population mean differs from the others
Significance level: α = 0.05
# Fit the one-way ANOVA model
anova_model <- aov(DaysMentHlthBad ~ activity_level, data = mental_health_data)
# Display the ANOVA table
summary(anova_model)## Df Sum Sq Mean Sq F value Pr(>F)
## activity_level 2 3109 1554.6 23.17 9.52e-11 ***
## Residuals 5754 386089 67.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Interpretation:
YOUR TURN - Extract and interpret the results:
Why do we need this? The F-test tells us that groups differ, but not which groups differ. Tukey’s Honest Significant Difference controls the family-wise error rate for multiple pairwise comparisons.
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = DaysMentHlthBad ~ activity_level, data = mental_health_data)
##
## $activity_level
## diff lwr upr p adj
## Moderate-None -1.2725867 -2.045657 -0.4995169 0.0003386
## Vigorous-None -1.5464873 -2.109345 -0.9836298 0.0000000
## Vigorous-Moderate -0.2739006 -1.098213 0.5504114 0.7159887
YOUR TURN - Complete the table:
| Comparison | Mean Difference | 95% CI Lower | 95% CI Upper | p-value | Significant? |
|---|---|---|---|---|---|
| Moderate - None | -1.2725867 | -2.045657 | -0.4995169 | 0.0003386 | Yes |
| Vigorous - None | -1.5464873 | -2.109345 | -0.9836298 | 0.0000000 | Yes |
| Vigorous - Moderate | -0.2739006 | -1.098213 | 0.5504114 | 0.7159887 | No |
Interpretation: Answer: Based on the Tukey-adjusted 95% confidence intervals, both the moderate- and vigorous- activity groups differed significantly from the no-activity group because their intervals excluded zero, whereas the confidence interval for the vigorous-moderate comparison included zero, indicating no significant difference.
# YOUR TURN: Calculate eta-squared
# Hint: Extract Sum Sq from the ANOVA summary
# Extract sum of squares from ANOVA table
anova_summary <- summary(anova_model)[[1]]
ss_treatment <- anova_summary$`Sum Sq`[1]
ss_total <- sum(anova_summary$`Sum Sq`)
# Calculate eta-squared
eta_squared <- ss_treatment / ss_total
cat("Eta-squared (η²):", round(eta_squared, 4), "\n")## Eta-squared (η²): 0.008
## Percentage of variance explained: 0.8 %
YOUR TURN - Interpret:
Only 0.8% of the variance in poor mental health days is explained by physical activity level 99.2% of the variance is due to other factors (genetics, stress, socioeconomic status, sleep, diet, social support, etc.)
Effective size indicate a small portion of the variance.
Individual Level: Physical activity is a very small piece of the mental health puzzle. You can’t predict someone’s mental health well just by knowing their activity level.
Population Level: Even small effects matter when applied to millions of people. A difference of 1.5 fewer poor mental health days per month across a population is still meaningful for public health.
YOUR TURN - Evaluate each plot:
Residuals vs Fitted: Points are clustered at a few fitted values with no obvious curved pattern and the smoothing line is roughly flat, suggesting the linearity assumption is generally reasonable.
Q-Q Plot: Plot revealed pronounced departures from the reference line, particularly in the tails of the distribution, indicating that the residuals deviated substantially from normality.
Scale-Location: Plot displayed relatively constant variability of standardized residuals across fitted values, with no clear increasing or decreasing trend, suggesting that the assumption of constant variance is mostly satisfied.
Residuals vs Leverage: Plot indicated that all observations fall within the Cook’s distance boundaries and show low leverage, meaning no single data point is unduly influencing the model.
# YOUR TURN: Conduct Levene's test
levene_test <- leveneTest(DaysMentHlthBad ~ activity_level, data = mental_health_data)
print(levene_test)## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 23.168 9.517e-11 ***
## 5754
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
YOUR TURN - Overall assessment:
Independence of Observations: LIKELY MET Each participant should be independent but data shows duplicate IDs
Normality:LIKELY VIOLATED The outcome measurement(DaysMentHlthBad) is highly right-skewed All groups have Median = 0, suggesting most people report 0 days
Homogeneity of Variance: VIOLATED Levene’s Test: F(2, 5754) = 23.17, p < .001 Variances differ significantly across groups
Duplicate IDs are the biggest threat Standard ANOVA assumes each observation is independent Repeated measures from the same person violate this Could lead to underestimated standard errors and inflated significance
Homogeneity violation - Minor threat With n = 5,757, the F-test is robust Unlikely to substantially affect conclusions Could consider Welch’s ANOVA as sensitivity check
Non-normality - Minimal threat Large sample size provides protection Could consider non-parametric alternative (Kruskal-Wallis) as sensitivity check —
YOUR TURN - Write a complete 2-3 paragraph results section:
Include: 1. Sample description and descriptive statistics 2. F-test results 3. Post-hoc comparisons (if applicable) 4. Effect size interpretation 5. Public health significance
Your Results Section:
1. How does the effect size help you understand the practical vs. statistical significance?
2. Why is it important to check ANOVA assumptions? What might happen if they’re violated?
3. In public health practice, when might you choose to use ANOVA?
4. What was the most challenging part of this lab activity?
Before submitting, verify you have:
To submit: Upload both your .Rmd file and the HTML output to Brightspace.
Lab completed on: February 04, 2026
Total Points: 15
| Category | Criteria | Points | Notes |
|---|---|---|---|
| Code Execution | All code chunks run without errors | 4 | - Deduct 1 pt per major error - Deduct 0.5 pt per minor warning |
| Completion | All “YOUR TURN” sections attempted | 4 | - Part B Steps 1-9 completed - All fill-in-the-blank answered - Tukey table filled in |
| Interpretation | Correct statistical interpretation | 4 | - Hypotheses correctly stated (1 pt) - ANOVA results interpreted (1 pt) - Post-hoc results interpreted (1 pt) - Assumptions evaluated (1 pt) |
| Results Section | Professional, complete write-up | 3 | - Includes descriptive stats (1 pt) - Reports F-test & post-hoc (1 pt) - Effect size & significance (1 pt) |
Code Execution (4 points):
Completion (4 points):
Interpretation (4 points):
Results Section (3 points):