library(readxl)
library(ggpubr)
## Loading required package: ggplot2
DatasetA <- read_excel("C:/Users/Joyce/Downloads/DatasetA.xlsx")
DatasetB <- read_excel("C:/Users/Joyce/Downloads/DatasetB.xlsx")
mean(DatasetA$StudyHours)
## [1] 6.135609
sd(DatasetA$StudyHours)
## [1] 1.369224
mean(DatasetA$ExamScore)
## [1] 90.06906
sd(DatasetA$ExamScore)
## [1] 6.795224
mean(DatasetB$ScreenTime)
## [1] 5.063296
sd(DatasetB$ScreenTime)
## [1] 2.056833
mean(DatasetB$SleepingHours)
## [1] 6.938459
sd(DatasetB$SleepingHours)
## [1] 1.351332
hist(DatasetA$StudyHours,
main = "Study Hours",
breaks = 20,
col = "lightblue",
border = "white",
cex.main = 1,
cex.axis = 1,
cex.lab = 1)
hist(DatasetA$ExamScore,
main = "Exam Score",
breaks = 20,
col = "lightblue",
border = "white",
cex.main = 1,
cex.axis = 1,
cex.lab = 1)
hist(DatasetB$ScreenTime,
main = "ScreenTime",
breaks = 20,
col = "lightblue",
border = "white",
cex.main = 1,
cex.axis = 1,
cex.lab = 1)
hist(DatasetB$SleepingHours,
main = "Sleeping Hours",
breaks = 20,
col = "lightcoral",
border = "white",
cex.main = 1,
cex.axis = 1,
cex.lab = 1)
shapiro.test(DatasetA$StudyHours)
##
## Shapiro-Wilk normality test
##
## data: DatasetA$StudyHours
## W = 0.99388, p-value = 0.9349
shapiro.test(DatasetA$ExamScore)
##
## Shapiro-Wilk normality test
##
## data: DatasetA$ExamScore
## W = 0.96286, p-value = 0.006465
shapiro.test(DatasetB$ScreenTime)
##
## Shapiro-Wilk normality test
##
## data: DatasetB$ScreenTime
## W = 0.90278, p-value = 1.914e-06
shapiro.test(DatasetB$SleepingHours)
##
## Shapiro-Wilk normality test
##
## data: DatasetB$SleepingHours
## W = 0.98467, p-value = 0.3004
cor.test(DatasetA$StudyHours,
DatasetA$ExamScore,
method = "spearman")
## Warning in cor.test.default(DatasetA$StudyHours, DatasetA$ExamScore, method =
## "spearman"): Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: DatasetA$StudyHours and DatasetA$ExamScore
## S = 16518, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.9008825
cor.test(DatasetB$ScreenTime,
DatasetB$SleepingHours,
method = "spearman")
##
## Spearman's rank correlation rho
##
## data: DatasetB$ScreenTime and DatasetB$SleepingHours
## S = 259052, p-value = 3.521e-09
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.5544674
ggscatter(
DatasetA,
x = "StudyHours",
y = "ExamScore",
add = "reg.line",
xlab = "Study Hours",
ylab = "Exam Score"
)
ggscatter(
DatasetB,
x = "ScreenTime",
y = "SleepingHours",
add = "reg.line",
xlab = "Screen Time",
ylab = "Sleeping Hours"
)
Study hours (M = 6.14, SD = 1.37) was correlated with the exam score (M = 90.07, SD = 6.80), ρ(98) = .90, p = .001. The relationship was positive and strong. As study hours increased, exam scores increased
Screen time (M = 5.06, SD = 2.06) was correlated with sleeping hours (M = 6.94, SD = 1.35), ρ(98) = -.55, p = .001. The relationship was negative and strong. As screen time increased, sleeping hours decreased.