library(csv)
## Warning: package 'csv' was built under R version 4.5.2
library(outliers)
## Warning: package 'outliers' was built under R version 4.5.2
df <- read.csv("C:/Analisis Regresi/datania1k.csv")
data <- df[c("Age","Annual_Premium")]
head(data)
## Age Annual_Premium
## 1 22 36513
## 2 24 2630
## 3 22 35832
## 4 72 36685
## 5 66 2630
## 6 42 31226
tail(data)
## Age Annual_Premium
## 995 48 47533
## 996 47 29384
## 997 56 47479
## 998 22 29000
## 999 48 45107
## 1000 33 43068
total_missing <- sum(is.na(data))
total_missing
## [1] 0
summary(data)
## Age Annual_Premium
## Min. :20.00 Min. : 2630
## 1st Qu.:25.00 1st Qu.: 24415
## Median :38.00 Median : 31512
## Mean :39.65 Mean : 30364
## 3rd Qu.:50.25 3rd Qu.: 39556
## Max. :85.00 Max. :100278
detect_outliers <- function(data) {
cat("\n=== DETEKSI OUTLIER ===\n\n")
outlier_report <- list()
for(var in names(data)[sapply(data, is.numeric)]) {
cat("Analisis outlier untuk variabel:", var, "\n")
# Statistik deskriptif
stats <- summary(data[[var]])
iqr_val <- IQR(data[[var]], na.rm = TRUE)
q1 <- quantile(data[[var]], 0.25, na.rm = TRUE)
q3 <- quantile(data[[var]], 0.75, na.rm = TRUE)
lower_bound <- q1 - 1.5 * iqr_val
upper_bound <- q3 + 1.5 * iqr_val
# Deteksi outlier dengan metode IQR
outliers_iqr <- data[[var]][data[[var]] < lower_bound | data[[var]] > upper_bound]
# Deteksi outlier dengan metode Z-score
z_scores <- scale(data[[var]])
outliers_z <- data[[var]][abs(z_scores) > 3]
# Deteksi outlier dengan metode Grubbs (uji statistik)
if(length(na.omit(data[[var]])) > 6) {
tryCatch({
grubbs_test <- grubbs.test(na.omit(data[[var]]))
grubbs_outlier <- ifelse(grubbs_test$p.value < 0.05, "Terdeteksi", "Tidak terdeteksi")
}, error = function(e) {
grubbs_outlier <- "Tidak dapat dihitung"
})
} else {
grubbs_outlier <- "Data tidak cukup"
}
# Ringkasan
outlier_report[[var]] <- list(
n_outliers_iqr = length(outliers_iqr),
n_outliers_z = length(outliers_z),
grubbs_result = grubbs_outlier,
lower_bound = lower_bound,
upper_bound = upper_bound,
outlier_values = unique(round(outliers_iqr, 2))
)
cat(" - Outlier (IQR method):", length(outliers_iqr), "\n")
cat(" - Outlier (Z-score > 3):", length(outliers_z), "\n")
cat(" - Uji Grubbs:", grubbs_outlier, "\n")
cat(" - Batas bawah:", round(lower_bound, 2), "\n")
cat(" - Batas atas:", round(upper_bound, 2), "\n")
if(length(outliers_iqr) > 0) {
cat(" - Nilai outlier:", paste(head(unique(round(outliers_iqr, 2)), 5), collapse = ", "), "\n")
}
cat("\n")
}
return(outlier_report)
}
# Deteksi outlier
outlier_analysis <- detect_outliers(data)
##
## === DETEKSI OUTLIER ===
##
## Analisis outlier untuk variabel: Age
## - Outlier (IQR method): 0
## - Outlier (Z-score > 3): 0
## - Uji Grubbs: Tidak terdeteksi
## - Batas bawah: -12.88
## - Batas atas: 88.12
##
## Analisis outlier untuk variabel: Annual_Premium
## - Outlier (IQR method): 26
## - Outlier (Z-score > 3): 5
## - Uji Grubbs: Terdeteksi
## - Batas bawah: 1704.5
## - Batas atas: 62266.5
## - Nilai outlier: 81192, 100278, 63273, 70452, 71918
cor(data)
## Age Annual_Premium
## Age 1.0000000 0.1387657
## Annual_Premium 0.1387657 1.0000000
model <- lm(data$Age~data$Annual_Premium,data = data)
cat("\n1. RINGKASAN MODEL:\n")
##
## 1. RINGKASAN MODEL:
summary_model <- summary(model)
print(summary_model)
##
## Call:
## lm(formula = data$Age ~ data$Annual_Premium, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26.016 -14.305 -0.939 10.210 45.079
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.559e+01 1.043e+00 34.114 < 2e-16 ***
## data$Annual_Premium 1.339e-04 3.025e-05 4.427 1.06e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.63 on 998 degrees of freedom
## Multiple R-squared: 0.01926, Adjusted R-squared: 0.01827
## F-statistic: 19.59 on 1 and 998 DF, p-value: 1.063e-05
# ===============================
# UJI HIPOTESIS REGRESI (UJI t)
# ===============================
alpha <- 0.05
summary_model <- summary(model)
coef_table <- coef(summary_model)
p_value <- as.numeric(coef_table[2, 4])
cat("\n=== UJI HIPOTESIS (H0) ===\n")
##
## === UJI HIPOTESIS (H0) ===
cat("H0 : Age tidak berpengaruh signifikan terhadap Annual_Premium\n")
## H0 : Age tidak berpengaruh signifikan terhadap Annual_Premium
cat("H1 : Age berpengaruh signifikan terhadap Annual_Premium\n\n")
## H1 : Age berpengaruh signifikan terhadap Annual_Premium
cat("Nilai p-value:", p_value, "\n")
## Nilai p-value: 1.062773e-05
if(p_value < alpha) {
cat("Keputusan: Tolak H0\n")
cat("Kesimpulan: Age berpengaruh signifikan terhadap Annual_Premium\n")
} else {
cat("Keputusan: Gagal menolak H0\n")
cat("Kesimpulan: Age tidak berpengaruh signifikan terhadap Annual_Premium\n")
}
## Keputusan: Tolak H0
## Kesimpulan: Age berpengaruh signifikan terhadap Annual_Premium