wine <- read.csv("whitewines.csv")
# examine the wine data
str(wine)
'data.frame': 4898 obs. of 12 variables:
$ fixed.acidity : num 6.7 5.7 5.9 5.3 6.4 7 7.9 6.6 7 6.5 ...
$ volatile.acidity : num 0.62 0.22 0.19 0.47 0.29 0.14 0.12 0.38 0.16 0.37 ...
$ citric.acid : num 0.24 0.2 0.26 0.1 0.21 0.41 0.49 0.28 0.3 0.33 ...
$ residual.sugar : num 1.1 16 7.4 1.3 9.65 0.9 5.2 2.8 2.6 3.9 ...
$ chlorides : num 0.039 0.044 0.034 0.036 0.041 0.037 0.049 0.043 0.043 0.027 ...
$ free.sulfur.dioxide : num 6 41 33 11 36 22 33 17 34 40 ...
$ total.sulfur.dioxide: num 62 113 123 74 119 95 152 67 90 130 ...
$ density : num 0.993 0.999 0.995 0.991 0.993 ...
$ pH : num 3.41 3.22 3.49 3.48 2.99 3.25 3.18 3.21 2.88 3.28 ...
$ sulphates : num 0.32 0.46 0.42 0.54 0.34 0.43 0.47 0.47 0.47 0.39 ...
$ alcohol : num 10.4 8.9 10.1 11.2 10.9 ...
$ quality : int 5 6 6 4 6 6 6 6 6 7 ...
# the distribution of quality ratings
hist(wine$quality)

# summary statistics of the wine data
summary(wine)
fixed.acidity volatile.acidity citric.acid residual.sugar
Min. : 3.800 Min. :0.0800 Min. :0.0000 Min. : 0.600
1st Qu.: 6.300 1st Qu.:0.2100 1st Qu.:0.2700 1st Qu.: 1.700
Median : 6.800 Median :0.2600 Median :0.3200 Median : 5.200
Mean : 6.855 Mean :0.2782 Mean :0.3342 Mean : 6.391
3rd Qu.: 7.300 3rd Qu.:0.3200 3rd Qu.:0.3900 3rd Qu.: 9.900
Max. :14.200 Max. :1.1000 Max. :1.6600 Max. :65.800
chlorides free.sulfur.dioxide total.sulfur.dioxide density
Min. :0.00900 Min. : 2.00 Min. : 9.0 Min. :0.9871
1st Qu.:0.03600 1st Qu.: 23.00 1st Qu.:108.0 1st Qu.:0.9917
Median :0.04300 Median : 34.00 Median :134.0 Median :0.9937
Mean :0.04577 Mean : 35.31 Mean :138.4 Mean :0.9940
3rd Qu.:0.05000 3rd Qu.: 46.00 3rd Qu.:167.0 3rd Qu.:0.9961
Max. :0.34600 Max. :289.00 Max. :440.0 Max. :1.0390
pH sulphates alcohol quality
Min. :2.720 Min. :0.2200 Min. : 8.00 Min. :3.000
1st Qu.:3.090 1st Qu.:0.4100 1st Qu.: 9.50 1st Qu.:5.000
Median :3.180 Median :0.4700 Median :10.40 Median :6.000
Mean :3.188 Mean :0.4898 Mean :10.51 Mean :5.878
3rd Qu.:3.280 3rd Qu.:0.5500 3rd Qu.:11.40 3rd Qu.:6.000
Max. :3.820 Max. :1.0800 Max. :14.20 Max. :9.000
wine_train <- wine[1:3750, ]
wine_test <- wine[3751:4898, ]
# regression tree using rpart
library(rpart)
m.rpart <- rpart(quality ~ ., data = wine_train)
# get basic information about the tree
m.rpart
n= 3750
node), split, n, deviance, yval
* denotes terminal node
1) root 3750 2945.53200 5.870933
2) alcohol< 10.85 2372 1418.86100 5.604975
4) volatile.acidity>=0.2275 1611 821.30730 5.432030
8) volatile.acidity>=0.3025 688 278.97670 5.255814 *
9) volatile.acidity< 0.3025 923 505.04230 5.563380 *
5) volatile.acidity< 0.2275 761 447.36400 5.971091 *
3) alcohol>=10.85 1378 1070.08200 6.328737
6) free.sulfur.dioxide< 10.5 84 95.55952 5.369048 *
7) free.sulfur.dioxide>=10.5 1294 892.13600 6.391036
14) alcohol< 11.76667 629 430.11130 6.173291
28) volatile.acidity>=0.465 11 10.72727 4.545455 *
29) volatile.acidity< 0.465 618 389.71680 6.202265 *
15) alcohol>=11.76667 665 403.99400 6.596992 *
# get more detailed information about the tree
summary(m.rpart)
Call:
rpart(formula = quality ~ ., data = wine_train)
n= 3750
CP nsplit rel error xerror xstd
1 0.15501053 0 1.0000000 1.0003178 0.02444998
2 0.05098911 1 0.8449895 0.8485301 0.02339376
3 0.02796998 2 0.7940004 0.8054543 0.02275139
4 0.01970128 3 0.7660304 0.7810014 0.02154488
5 0.01265926 4 0.7463291 0.7613503 0.02075335
6 0.01007193 5 0.7336698 0.7571202 0.02066672
7 0.01000000 6 0.7235979 0.7456725 0.02037059
Variable importance
alcohol density volatile.acidity
34 21 15
chlorides total.sulfur.dioxide free.sulfur.dioxide
11 7 6
residual.sugar sulphates citric.acid
3 1 1
Node number 1: 3750 observations, complexity param=0.1550105
mean=5.870933, MSE=0.7854751
left son=2 (2372 obs) right son=3 (1378 obs)
Primary splits:
alcohol < 10.85 to the left, improve=0.15501050, (0 missing)
density < 0.992035 to the right, improve=0.10915940, (0 missing)
chlorides < 0.0395 to the right, improve=0.07682258, (0 missing)
total.sulfur.dioxide < 158.5 to the right, improve=0.04089663, (0 missing)
citric.acid < 0.235 to the left, improve=0.03636458, (0 missing)
Surrogate splits:
density < 0.991995 to the right, agree=0.869, adj=0.644, (0 split)
chlorides < 0.0375 to the right, agree=0.757, adj=0.339, (0 split)
total.sulfur.dioxide < 103.5 to the right, agree=0.690, adj=0.155, (0 split)
residual.sugar < 5.375 to the right, agree=0.667, adj=0.094, (0 split)
sulphates < 0.345 to the right, agree=0.647, adj=0.038, (0 split)
Node number 2: 2372 observations, complexity param=0.05098911
mean=5.604975, MSE=0.5981709
left son=4 (1611 obs) right son=5 (761 obs)
Primary splits:
volatile.acidity < 0.2275 to the right, improve=0.10585250, (0 missing)
free.sulfur.dioxide < 13.5 to the left, improve=0.03390500, (0 missing)
citric.acid < 0.235 to the left, improve=0.03204075, (0 missing)
alcohol < 10.11667 to the left, improve=0.03136524, (0 missing)
chlorides < 0.0585 to the right, improve=0.01633599, (0 missing)
Surrogate splits:
pH < 3.485 to the left, agree=0.694, adj=0.047, (0 split)
sulphates < 0.755 to the left, agree=0.685, adj=0.020, (0 split)
total.sulfur.dioxide < 105.5 to the right, agree=0.683, adj=0.011, (0 split)
residual.sugar < 0.75 to the right, agree=0.681, adj=0.007, (0 split)
chlorides < 0.0285 to the right, agree=0.680, adj=0.003, (0 split)
Node number 3: 1378 observations, complexity param=0.02796998
mean=6.328737, MSE=0.7765472
left son=6 (84 obs) right son=7 (1294 obs)
Primary splits:
free.sulfur.dioxide < 10.5 to the left, improve=0.07699080, (0 missing)
alcohol < 11.76667 to the left, improve=0.06210660, (0 missing)
total.sulfur.dioxide < 67.5 to the left, improve=0.04438619, (0 missing)
residual.sugar < 1.375 to the left, improve=0.02905351, (0 missing)
fixed.acidity < 7.35 to the right, improve=0.02613259, (0 missing)
Surrogate splits:
total.sulfur.dioxide < 53.5 to the left, agree=0.952, adj=0.214, (0 split)
volatile.acidity < 0.875 to the right, agree=0.940, adj=0.024, (0 split)
Node number 4: 1611 observations, complexity param=0.01265926
mean=5.43203, MSE=0.5098121
left son=8 (688 obs) right son=9 (923 obs)
Primary splits:
volatile.acidity < 0.3025 to the right, improve=0.04540111, (0 missing)
alcohol < 10.05 to the left, improve=0.03874403, (0 missing)
free.sulfur.dioxide < 13.5 to the left, improve=0.03338886, (0 missing)
chlorides < 0.0495 to the right, improve=0.02574623, (0 missing)
citric.acid < 0.195 to the left, improve=0.02327981, (0 missing)
Surrogate splits:
citric.acid < 0.215 to the left, agree=0.633, adj=0.141, (0 split)
free.sulfur.dioxide < 20.5 to the left, agree=0.600, adj=0.063, (0 split)
chlorides < 0.0595 to the right, agree=0.593, adj=0.047, (0 split)
residual.sugar < 1.15 to the left, agree=0.583, adj=0.023, (0 split)
total.sulfur.dioxide < 219.25 to the right, agree=0.582, adj=0.022, (0 split)
Node number 5: 761 observations
mean=5.971091, MSE=0.5878633
Node number 6: 84 observations
mean=5.369048, MSE=1.137613
Node number 7: 1294 observations, complexity param=0.01970128
mean=6.391036, MSE=0.6894405
left son=14 (629 obs) right son=15 (665 obs)
Primary splits:
alcohol < 11.76667 to the left, improve=0.06504696, (0 missing)
chlorides < 0.0395 to the right, improve=0.02758705, (0 missing)
fixed.acidity < 7.35 to the right, improve=0.02750932, (0 missing)
pH < 3.055 to the left, improve=0.02307356, (0 missing)
total.sulfur.dioxide < 191.5 to the right, improve=0.02186818, (0 missing)
Surrogate splits:
density < 0.990885 to the right, agree=0.720, adj=0.424, (0 split)
volatile.acidity < 0.2675 to the left, agree=0.637, adj=0.253, (0 split)
chlorides < 0.0365 to the right, agree=0.630, adj=0.238, (0 split)
residual.sugar < 1.475 to the left, agree=0.575, adj=0.126, (0 split)
total.sulfur.dioxide < 128.5 to the right, agree=0.574, adj=0.124, (0 split)
Node number 8: 688 observations
mean=5.255814, MSE=0.4054895
Node number 9: 923 observations
mean=5.56338, MSE=0.5471747
Node number 14: 629 observations, complexity param=0.01007193
mean=6.173291, MSE=0.6838017
left son=28 (11 obs) right son=29 (618 obs)
Primary splits:
volatile.acidity < 0.465 to the right, improve=0.06897561, (0 missing)
total.sulfur.dioxide < 200 to the right, improve=0.04223066, (0 missing)
residual.sugar < 0.975 to the left, improve=0.03061714, (0 missing)
fixed.acidity < 7.35 to the right, improve=0.02978501, (0 missing)
sulphates < 0.575 to the left, improve=0.02165970, (0 missing)
Surrogate splits:
citric.acid < 0.045 to the left, agree=0.986, adj=0.182, (0 split)
total.sulfur.dioxide < 279.25 to the right, agree=0.986, adj=0.182, (0 split)
Node number 15: 665 observations
mean=6.596992, MSE=0.6075098
Node number 28: 11 observations
mean=4.545455, MSE=0.9752066
Node number 29: 618 observations
mean=6.202265, MSE=0.6306098
install.packages("rpart.plot")
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/rpart.plot_3.1.3.tar.gz'
Content type 'application/x-gzip' length 1014419 bytes (990 KB)
==================================================
downloaded 990 KB
The downloaded source packages are in
‘/tmp/RtmpSfyAyD/downloaded_packages’
# use the rpart.plot package to create a visualization
library(rpart.plot)
# a basic decision tree diagram
rpart.plot(m.rpart, digits = 3)

# a few adjustments to the diagram
rpart.plot(m.rpart, digits = 4, fallen.leaves = TRUE, type = 3, extra = 101)

# generate predictions for the testing dataset
p.rpart <- predict(m.rpart, wine_test)
# compare the distribution of predicted values vs. actual values
summary(p.rpart)
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.545 5.563 5.971 5.893 6.202 6.597
summary(wine_test$quality)
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.000 5.000 6.000 5.901 6.000 9.000
# compare the correlation
cor(p.rpart, wine_test$quality)
[1] 0.5369525
# function to calculate the mean absolute error
MAE <- function(actual, predicted) {
mean(abs(actual - predicted))
}
# mean absolute error between predicted and actual values
MAE(p.rpart, wine_test$quality)
[1] 0.5872652
# mean absolute error between actual values and mean value
mean(wine_train$quality) # result = 5.87
[1] 5.870933
MAE(5.87, wine_test$quality)
[1] 0.6722474
install.packages("plyr")
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/plyr_1.8.9.tar.gz'
Content type 'application/x-gzip' length 402041 bytes (392 KB)
==================================================
downloaded 392 KB
The downloaded source packages are in
‘/tmp/RtmpSfyAyD/downloaded_packages’
install.packages("Cubist")
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/reshape2_1.4.5.tar.gz'
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/Cubist_0.5.1.tar.gz'
The downloaded source packages are in
‘/tmp/RtmpSfyAyD/downloaded_packages’
# train a Cubist Model Tree
library(Cubist)
m.cubist <- cubist(x = wine_train[-12], y = wine_train$quality)
# display basic information about the model tree
m.cubist
Call:
cubist.default(x = wine_train[-12], y = wine_train$quality)
Number of samples: 3750
Number of predictors: 11
Number of committees: 1
Number of rules: 25
# display the tree itself
summary(m.cubist)
Call:
cubist.default(x = wine_train[-12], y = wine_train$quality)
Cubist [Release 2.07 GPL Edition] Tue Feb 3 01:07:57 2026
---------------------------------
Target attribute `outcome'
Read 3750 cases (12 attributes) from undefined.data
Model:
Rule 1: [21 cases, mean 5.0, range 4 to 6, est err 0.5]
if
free.sulfur.dioxide > 30
total.sulfur.dioxide > 195
total.sulfur.dioxide <= 235
sulphates > 0.64
alcohol > 9.1
then
outcome = 573.6 + 0.0478 total.sulfur.dioxide - 573 density
- 0.788 alcohol + 0.186 residual.sugar - 4.73 volatile.acidity
Rule 2: [28 cases, mean 5.0, range 4 to 8, est err 0.7]
if
volatile.acidity > 0.31
citric.acid <= 0.36
residual.sugar <= 1.45
total.sulfur.dioxide <= 97
alcohol > 9.1
then
outcome = 168.2 + 4.75 citric.acid + 0.0123 total.sulfur.dioxide
- 170 density + 0.057 residual.sugar - 6.4 chlorides + 0.84 pH
+ 0.14 fixed.acidity
Rule 3: [171 cases, mean 5.1, range 3 to 6, est err 0.3]
if
volatile.acidity > 0.205
chlorides <= 0.054
density <= 0.99839
alcohol <= 9.1
then
outcome = 147.4 - 144 density + 0.08 residual.sugar + 0.117 alcohol
- 0.87 volatile.acidity - 0.09 pH - 0.01 fixed.acidity
Rule 4: [37 cases, mean 5.3, range 3 to 6, est err 0.5]
if
free.sulfur.dioxide > 30
total.sulfur.dioxide > 235
alcohol > 9.1
then
outcome = 19.5 - 0.013 total.sulfur.dioxide - 2.7 volatile.acidity
- 10 density + 0.005 residual.sugar + 0.008 alcohol
Rule 5: [64 cases, mean 5.3, range 5 to 6, est err 0.3]
if
volatile.acidity > 0.205
residual.sugar > 17.85
then
outcome = -23.6 + 0.233 alcohol - 5.2 chlorides - 0.75 citric.acid
+ 28 density - 0.81 volatile.acidity - 0.19 pH
- 0.002 residual.sugar
Rule 6: [56 cases, mean 5.3, range 4 to 7, est err 0.6]
if
fixed.acidity <= 7.1
volatile.acidity > 0.205
chlorides > 0.054
density <= 0.99839
alcohol <= 9.1
then
outcome = 40.6 + 0.374 alcohol - 1.62 volatile.acidity
+ 0.026 residual.sugar - 38 density - 0.21 pH
- 0.01 fixed.acidity
Rule 7: [337 cases, mean 5.3, range 3 to 7, est err 0.4]
if
fixed.acidity <= 7.8
volatile.acidity > 0.305
chlorides <= 0.09
free.sulfur.dioxide <= 82.5
total.sulfur.dioxide > 130
total.sulfur.dioxide <= 235
sulphates <= 0.64
alcohol <= 10.4
then
outcome = -32.1 + 0.233 alcohol - 9.7 chlorides
+ 0.0038 total.sulfur.dioxide - 0.0081 free.sulfur.dioxide
+ 35 density + 0.81 volatile.acidity
Rule 8: [30 cases, mean 5.5, range 3 to 7, est err 0.5]
if
fixed.acidity > 7.1
volatile.acidity > 0.205
chlorides > 0.054
density <= 0.99839
alcohol <= 9.1
then
outcome = 244 - 1.56 fixed.acidity - 228 density
+ 0.0252 free.sulfur.dioxide - 7.3 chlorides
- 0.19 volatile.acidity + 0.003 residual.sugar
Rule 9: [98 cases, mean 5.5, range 4 to 8, est err 0.5]
if
volatile.acidity > 0.155
chlorides > 0.09
total.sulfur.dioxide <= 235
sulphates <= 0.64
then
outcome = 55.9 - 3.85 volatile.acidity - 52 density
+ 0.023 residual.sugar + 0.092 alcohol + 0.35 pH
+ 0.05 fixed.acidity + 0.3 sulphates
+ 0.001 free.sulfur.dioxide
Rule 10: [446 cases, mean 5.6, range 4 to 8, est err 0.5]
if
fixed.acidity <= 7.8
volatile.acidity > 0.155
volatile.acidity <= 0.305
chlorides <= 0.09
free.sulfur.dioxide <= 82.5
total.sulfur.dioxide > 130
total.sulfur.dioxide <= 235
sulphates <= 0.64
alcohol > 9.1
alcohol <= 10.4
then
outcome = 15.1 + 0.35 alcohol - 3.09 volatile.acidity - 14.7 chlorides
+ 1.16 sulphates - 0.0022 total.sulfur.dioxide
+ 0.11 fixed.acidity + 0.45 pH + 0.5 citric.acid - 14 density
+ 0.006 residual.sugar
Rule 11: [31 cases, mean 5.6, range 3 to 8, est err 0.8]
if
volatile.acidity > 0.31
citric.acid > 0.36
free.sulfur.dioxide <= 30
total.sulfur.dioxide <= 97
then
outcome = 3.2 + 0.0584 total.sulfur.dioxide + 7.77 volatile.acidity
+ 0.328 alcohol - 9 density + 0.003 residual.sugar
Rule 12: [20 cases, mean 5.7, range 3 to 8, est err 0.9]
if
free.sulfur.dioxide > 82.5
total.sulfur.dioxide <= 235
sulphates <= 0.64
alcohol > 9.1
then
outcome = -8.9 + 109.3 chlorides + 0.948 alcohol
Rule 13: [331 cases, mean 5.8, range 4 to 8, est err 0.5]
if
volatile.acidity > 0.31
free.sulfur.dioxide <= 30
total.sulfur.dioxide > 97
alcohol > 9.1
then
outcome = 89.8 + 0.0234 free.sulfur.dioxide + 0.324 alcohol
+ 0.07 residual.sugar - 90 density - 1.47 volatile.acidity
+ 0.48 pH
Rule 14: [116 cases, mean 5.8, range 3 to 8, est err 0.6]
if
fixed.acidity > 7.8
volatile.acidity > 0.155
free.sulfur.dioxide > 30
total.sulfur.dioxide > 130
total.sulfur.dioxide <= 235
sulphates <= 0.64
alcohol > 9.1
then
outcome = 6 + 0.346 alcohol - 0.41 fixed.acidity - 1.69 volatile.acidity
- 2.9 chlorides + 0.19 sulphates + 0.07 pH
Rule 15: [115 cases, mean 5.8, range 4 to 7, est err 0.5]
if
volatile.acidity > 0.205
residual.sugar <= 17.85
density > 0.99839
alcohol <= 9.1
then
outcome = -110.2 + 120 density - 3.46 volatile.acidity - 0.97 pH
- 0.022 residual.sugar + 0.088 alcohol - 0.6 citric.acid
- 0.01 fixed.acidity
Rule 16: [986 cases, mean 5.9, range 3 to 9, est err 0.6]
if
volatile.acidity <= 0.31
free.sulfur.dioxide <= 30
alcohol > 9.1
then
outcome = 280.4 - 282 density + 0.128 residual.sugar
+ 0.0264 free.sulfur.dioxide - 3 volatile.acidity + 1.2 pH
+ 0.65 citric.acid + 0.09 fixed.acidity + 0.56 sulphates
+ 0.015 alcohol
Rule 17: [49 cases, mean 6.0, range 5 to 8, est err 0.5]
if
volatile.acidity > 0.155
residual.sugar > 8.8
free.sulfur.dioxide > 30
total.sulfur.dioxide <= 130
pH <= 3.26
alcohol > 9.1
then
outcome = 173.5 - 169 density + 0.055 alcohol + 0.38 sulphates
+ 0.002 residual.sugar
Rule 18: [114 cases, mean 6.1, range 3 to 9, est err 0.6]
if
volatile.acidity > 0.31
citric.acid <= 0.36
residual.sugar > 1.45
total.sulfur.dioxide <= 97
alcohol > 9.1
then
outcome = 302.3 - 305 density + 0.0128 total.sulfur.dioxide
+ 0.096 residual.sugar + 1.94 citric.acid + 1.05 pH
+ 0.17 fixed.acidity - 6.7 chlorides
+ 0.0022 free.sulfur.dioxide - 0.21 volatile.acidity
+ 0.013 alcohol + 0.09 sulphates
Rule 19: [145 cases, mean 6.1, range 5 to 8, est err 0.6]
if
volatile.acidity > 0.155
free.sulfur.dioxide > 30
total.sulfur.dioxide <= 195
sulphates > 0.64
then
outcome = 206 - 209 density + 0.069 residual.sugar + 0.38 fixed.acidity
+ 2.79 sulphates + 0.0155 free.sulfur.dioxide
- 0.0051 total.sulfur.dioxide - 1.71 citric.acid + 1.04 pH
Rule 20: [555 cases, mean 6.1, range 3 to 9, est err 0.6]
if
total.sulfur.dioxide > 130
total.sulfur.dioxide <= 235
sulphates <= 0.64
alcohol > 10.4
then
outcome = 108 + 0.276 alcohol - 109 density + 0.05 residual.sugar
+ 0.77 pH - 1.02 volatile.acidity - 4.2 chlorides
+ 0.78 sulphates + 0.08 fixed.acidity
+ 0.0016 free.sulfur.dioxide - 0.0003 total.sulfur.dioxide
Rule 21: [73 cases, mean 6.2, range 4 to 8, est err 0.4]
if
volatile.acidity > 0.155
citric.acid <= 0.28
residual.sugar <= 8.8
free.sulfur.dioxide > 30
total.sulfur.dioxide <= 130
pH <= 3.26
sulphates <= 0.64
alcohol > 9.1
then
outcome = 4.2 + 0.147 residual.sugar + 0.47 alcohol + 3.75 sulphates
- 2.5 volatile.acidity - 5 density
Rule 22: [244 cases, mean 6.3, range 4 to 8, est err 0.6]
if
citric.acid > 0.28
residual.sugar <= 8.8
free.sulfur.dioxide > 30
total.sulfur.dioxide <= 130
pH <= 3.26
then
outcome = 40.1 + 0.278 alcohol + 1.3 sulphates - 39 density
+ 0.017 residual.sugar + 0.001 total.sulfur.dioxide + 0.17 pH
+ 0.03 fixed.acidity
Rule 23: [106 cases, mean 6.3, range 4 to 8, est err 0.6]
if
volatile.acidity <= 0.155
free.sulfur.dioxide > 30
then
outcome = 139.1 - 138 density + 0.058 residual.sugar + 0.71 pH
+ 0.92 sulphates + 0.11 fixed.acidity - 0.73 volatile.acidity
+ 0.055 alcohol - 0.0012 total.sulfur.dioxide
+ 0.0007 free.sulfur.dioxide
Rule 24: [137 cases, mean 6.5, range 4 to 9, est err 0.6]
if
volatile.acidity > 0.155
free.sulfur.dioxide > 30
total.sulfur.dioxide <= 130
pH > 3.26
sulphates <= 0.64
alcohol > 9.1
then
outcome = 114.2 + 0.0142 total.sulfur.dioxide - 107 density
- 11.8 chlorides - 1.57 pH + 0.124 alcohol + 1.21 sulphates
+ 1.16 volatile.acidity + 0.021 residual.sugar
+ 0.04 fixed.acidity
Rule 25: [92 cases, mean 6.5, range 4 to 8, est err 0.6]
if
volatile.acidity <= 0.205
alcohol <= 9.1
then
outcome = -200.7 + 210 density + 5.88 volatile.acidity + 23.9 chlorides
- 2.83 citric.acid - 1.17 pH
Evaluation on training data (3750 cases):
Average |error| 0.5
Relative |error| 0.67
Correlation coefficient 0.66
Attribute usage:
Conds Model
84% 93% alcohol
80% 89% volatile.acidity
70% 61% free.sulfur.dioxide
63% 50% total.sulfur.dioxide
44% 70% sulphates
26% 44% chlorides
22% 76% fixed.acidity
16% 87% residual.sugar
11% 86% pH
11% 45% citric.acid
8% 97% density
Time: 0.2 secs
# generate predictions for the model
p.cubist <- predict(m.cubist, wine_test)
# summary statistics about the predictions
summary(p.cubist)
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.677 5.416 5.906 5.848 6.238 7.393
# correlation between the predicted and true values
cor(p.cubist, wine_test$quality)
[1] 0.6201015
# mean absolute error of predicted and true values
# (uses a custom function defined above)
MAE(wine_test$quality, p.cubist)
[1] 0.5339725
LS0tCnRpdGxlOiAid2luZV9xdWFsaXR5IgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpgYGB7cn0Kd2luZSA8LSByZWFkLmNzdigid2hpdGV3aW5lcy5jc3YiKQpgYGAKCgpgYGB7cn0KIyBleGFtaW5lIHRoZSB3aW5lIGRhdGEKc3RyKHdpbmUpCmBgYAoKCgpgYGB7cn0KIyB0aGUgZGlzdHJpYnV0aW9uIG9mIHF1YWxpdHkgcmF0aW5ncwpoaXN0KHdpbmUkcXVhbGl0eSkKYGBgCgoKYGBge3J9CiMgc3VtbWFyeSBzdGF0aXN0aWNzIG9mIHRoZSB3aW5lIGRhdGEKc3VtbWFyeSh3aW5lKQpgYGAKCgoKYGBge3J9CndpbmVfdHJhaW4gPC0gd2luZVsxOjM3NTAsIF0Kd2luZV90ZXN0IDwtIHdpbmVbMzc1MTo0ODk4LCBdCmBgYAoKYGBge3J9CiMgcmVncmVzc2lvbiB0cmVlIHVzaW5nIHJwYXJ0CmxpYnJhcnkocnBhcnQpCm0ucnBhcnQgPC0gcnBhcnQocXVhbGl0eSB+IC4sIGRhdGEgPSB3aW5lX3RyYWluKQpgYGAKCmBgYHtyfQojIGdldCBiYXNpYyBpbmZvcm1hdGlvbiBhYm91dCB0aGUgdHJlZQptLnJwYXJ0CmBgYAoKCgpgYGB7cn0KIyBnZXQgbW9yZSBkZXRhaWxlZCBpbmZvcm1hdGlvbiBhYm91dCB0aGUgdHJlZQpzdW1tYXJ5KG0ucnBhcnQpCmBgYAoKYGBge3J9Cmluc3RhbGwucGFja2FnZXMoInJwYXJ0LnBsb3QiKQpgYGAKCmBgYHtyfQojIHVzZSB0aGUgcnBhcnQucGxvdCBwYWNrYWdlIHRvIGNyZWF0ZSBhIHZpc3VhbGl6YXRpb24KbGlicmFyeShycGFydC5wbG90KQpgYGAKCgoKCmBgYHtyfQojIGEgYmFzaWMgZGVjaXNpb24gdHJlZSBkaWFncmFtCnJwYXJ0LnBsb3QobS5ycGFydCwgZGlnaXRzID0gMykKYGBgCgoKCgpgYGB7cn0KIyBhIGZldyBhZGp1c3RtZW50cyB0byB0aGUgZGlhZ3JhbQpycGFydC5wbG90KG0ucnBhcnQsIGRpZ2l0cyA9IDQsIGZhbGxlbi5sZWF2ZXMgPSBUUlVFLCB0eXBlID0gMywgZXh0cmEgPSAxMDEpCmBgYAoKCmBgYHtyfQojIGdlbmVyYXRlIHByZWRpY3Rpb25zIGZvciB0aGUgdGVzdGluZyBkYXRhc2V0CnAucnBhcnQgPC0gcHJlZGljdChtLnJwYXJ0LCB3aW5lX3Rlc3QpCmBgYAoKCgpgYGB7cn0KIyBjb21wYXJlIHRoZSBkaXN0cmlidXRpb24gb2YgcHJlZGljdGVkIHZhbHVlcyB2cy4gYWN0dWFsIHZhbHVlcwpzdW1tYXJ5KHAucnBhcnQpCmBgYAoKCgoKYGBge3J9CnN1bW1hcnkod2luZV90ZXN0JHF1YWxpdHkpCmBgYAoKYGBge3J9CiMgY29tcGFyZSB0aGUgY29ycmVsYXRpb24KY29yKHAucnBhcnQsIHdpbmVfdGVzdCRxdWFsaXR5KQpgYGAKCgpgYGB7cn0KIyBmdW5jdGlvbiB0byBjYWxjdWxhdGUgdGhlIG1lYW4gYWJzb2x1dGUgZXJyb3IKTUFFIDwtIGZ1bmN0aW9uKGFjdHVhbCwgcHJlZGljdGVkKSB7CiAgbWVhbihhYnMoYWN0dWFsIC0gcHJlZGljdGVkKSkgIAp9CmBgYAoKYGBge3J9CiMgbWVhbiBhYnNvbHV0ZSBlcnJvciBiZXR3ZWVuIHByZWRpY3RlZCBhbmQgYWN0dWFsIHZhbHVlcwpNQUUocC5ycGFydCwgd2luZV90ZXN0JHF1YWxpdHkpCmBgYAoKCgpgYGB7cn0KIyBtZWFuIGFic29sdXRlIGVycm9yIGJldHdlZW4gYWN0dWFsIHZhbHVlcyBhbmQgbWVhbiB2YWx1ZQptZWFuKHdpbmVfdHJhaW4kcXVhbGl0eSkgIyByZXN1bHQgPSA1Ljg3CmBgYAoKCgpgYGB7cn0KTUFFKDUuODcsIHdpbmVfdGVzdCRxdWFsaXR5KQpgYGAKCmBgYHtyfQppbnN0YWxsLnBhY2thZ2VzKCJwbHlyIikKaW5zdGFsbC5wYWNrYWdlcygiQ3ViaXN0IikKYGBgCgpgYGB7cn0KIyB0cmFpbiBhIEN1YmlzdCBNb2RlbCBUcmVlCmxpYnJhcnkoQ3ViaXN0KQpgYGAKCgpgYGB7cn0KbS5jdWJpc3QgPC0gY3ViaXN0KHggPSB3aW5lX3RyYWluWy0xMl0sIHkgPSB3aW5lX3RyYWluJHF1YWxpdHkpCmBgYAoKCgoKYGBge3J9CiMgZGlzcGxheSBiYXNpYyBpbmZvcm1hdGlvbiBhYm91dCB0aGUgbW9kZWwgdHJlZQptLmN1YmlzdApgYGAKCmBgYHtyfQojIGRpc3BsYXkgdGhlIHRyZWUgaXRzZWxmCnN1bW1hcnkobS5jdWJpc3QpCmBgYAoKCgpgYGB7cn0KIyBnZW5lcmF0ZSBwcmVkaWN0aW9ucyBmb3IgdGhlIG1vZGVsCnAuY3ViaXN0IDwtIHByZWRpY3QobS5jdWJpc3QsIHdpbmVfdGVzdCkKYGBgCgpgYGB7cn0KIyBzdW1tYXJ5IHN0YXRpc3RpY3MgYWJvdXQgdGhlIHByZWRpY3Rpb25zCnN1bW1hcnkocC5jdWJpc3QpCmBgYAoKYGBge3J9CiMgY29ycmVsYXRpb24gYmV0d2VlbiB0aGUgcHJlZGljdGVkIGFuZCB0cnVlIHZhbHVlcwpjb3IocC5jdWJpc3QsIHdpbmVfdGVzdCRxdWFsaXR5KQpgYGAKCmBgYHtyfQojIG1lYW4gYWJzb2x1dGUgZXJyb3Igb2YgcHJlZGljdGVkIGFuZCB0cnVlIHZhbHVlcwojICh1c2VzIGEgY3VzdG9tIGZ1bmN0aW9uIGRlZmluZWQgYWJvdmUpCk1BRSh3aW5lX3Rlc3QkcXVhbGl0eSwgcC5jdWJpc3QpCmBgYAoK