## Step 2: Exploring and preparing the data ----
insurance <- read.csv("insurance.csv", stringsAsFactors = TRUE)
str(insurance)
'data.frame': 1338 obs. of 7 variables:
$ age : int 19 18 28 33 32 31 46 37 37 60 ...
$ sex : Factor w/ 2 levels "female","male": 1 2 2 2 2 1 1 1 2 1 ...
$ bmi : num 27.9 33.8 33 22.7 28.9 25.7 33.4 27.7 29.8 25.8 ...
$ children: int 0 1 3 0 0 0 1 3 2 0 ...
$ smoker : Factor w/ 2 levels "no","yes": 2 1 1 1 1 1 1 1 1 1 ...
$ region : Factor w/ 4 levels "northeast","northwest",..: 4 3 3 2 2 3 3 2 1 2 ...
$ expenses: num 16885 1726 4449 21984 3867 ...
# summarize the charges variable
summary(insurance$expenses)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1122 4740 9382 13270 16640 63770
# histogram of insurance charges
hist(insurance$expenses)

# table of region
table(insurance$region)
northeast northwest southeast southwest
324 325 364 325
# exploring relationships among features: correlation matrix
cor(insurance[c("age", "bmi", "children", "expenses")])
age bmi children expenses
age 1.0000000 0.10934101 0.04246900 0.29900819
bmi 0.1093410 1.00000000 0.01264471 0.19857626
children 0.0424690 0.01264471 1.00000000 0.06799823
expenses 0.2990082 0.19857626 0.06799823 1.00000000
# visualing relationships among features: scatterplot matrix
pairs(insurance[c("age", "bmi", "children", "expenses")])

## Step 3: Training a model on the data ----
ins_model <- lm(expenses ~ age + children + bmi + sex + smoker + region,
data = insurance)
ins_model <- lm(expenses ~ ., data = insurance) # this is equivalent to above
# see the estimated beta coefficients
ins_model
Call:
lm(formula = expenses ~ ., data = insurance)
Coefficients:
(Intercept) age sexmale bmi
-11941.6 256.8 -131.4 339.3
children smokeryes regionnorthwest regionsoutheast
475.7 23847.5 -352.8 -1035.6
regionsouthwest
-959.3
# see more detail about the estimated beta coefficients
summary(ins_model)
Call:
lm(formula = expenses ~ ., data = insurance)
Residuals:
Min 1Q Median 3Q Max
-11302.7 -2850.9 -979.6 1383.9 29981.7
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -11941.6 987.8 -12.089 < 2e-16 ***
age 256.8 11.9 21.586 < 2e-16 ***
sexmale -131.3 332.9 -0.395 0.693255
bmi 339.3 28.6 11.864 < 2e-16 ***
children 475.7 137.8 3.452 0.000574 ***
smokeryes 23847.5 413.1 57.723 < 2e-16 ***
regionnorthwest -352.8 476.3 -0.741 0.458976
regionsoutheast -1035.6 478.7 -2.163 0.030685 *
regionsouthwest -959.3 477.9 -2.007 0.044921 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 6062 on 1329 degrees of freedom
Multiple R-squared: 0.7509, Adjusted R-squared: 0.7494
F-statistic: 500.9 on 8 and 1329 DF, p-value: < 2.2e-16
# add a higher-order "age" term
insurance$age2 <- insurance$age^2
# add an indicator for BMI >= 30
insurance$bmi30 <- ifelse(insurance$bmi >= 30, 1, 0)
# create final model
ins_model2 <- lm(expenses ~ age + age2 + children + bmi + sex +
bmi30*smoker + region, data = insurance)
summary(ins_model2)
Call:
lm(formula = expenses ~ age + age2 + children + bmi + sex + bmi30 *
smoker + region, data = insurance)
Residuals:
Min 1Q Median 3Q Max
-17297.1 -1656.0 -1262.7 -727.8 24161.6
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 139.0053 1363.1359 0.102 0.918792
age -32.6181 59.8250 -0.545 0.585690
age2 3.7307 0.7463 4.999 6.54e-07 ***
children 678.6017 105.8855 6.409 2.03e-10 ***
bmi 119.7715 34.2796 3.494 0.000492 ***
sexmale -496.7690 244.3713 -2.033 0.042267 *
bmi30 -997.9355 422.9607 -2.359 0.018449 *
smokeryes 13404.5952 439.9591 30.468 < 2e-16 ***
regionnorthwest -279.1661 349.2826 -0.799 0.424285
regionsoutheast -828.0345 351.6484 -2.355 0.018682 *
regionsouthwest -1222.1619 350.5314 -3.487 0.000505 ***
bmi30:smokeryes 19810.1534 604.6769 32.762 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 4445 on 1326 degrees of freedom
Multiple R-squared: 0.8664, Adjusted R-squared: 0.8653
F-statistic: 781.7 on 11 and 1326 DF, p-value: < 2.2e-16
# making predictions with the regression model
insurance$pred <- predict(ins_model2, insurance)
cor(insurance$pred, insurance$expenses)
[1] 0.9307999
plot(insurance$pred, insurance$expenses)
abline(a = 0, b = 1, col = "red", lwd = 3, lty = 2)

predict(ins_model2,
data.frame(age = 30, age2 = 30^2, children = 2,
bmi = 30, sex = "male", bmi30 = 1,
smoker = "no", region = "northeast"))
1
5973.774
predict(ins_model2,
data.frame(age = 30, age2 = 30^2, children = 2,
bmi = 30, sex = "female", bmi30 = 1,
smoker = "no", region = "northeast"))
1
6470.543
predict(ins_model2,
data.frame(age = 30, age2 = 30^2, children = 0,
bmi = 30, sex = "female", bmi30 = 1,
smoker = "no", region = "northeast"))
1
5113.34
LS0tCnRpdGxlOiAiaW5zdXJhbmNlIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgoKCgoKCgpgYGB7cn0KIyMgU3RlcCAyOiBFeHBsb3JpbmcgYW5kIHByZXBhcmluZyB0aGUgZGF0YSAtLS0tCmluc3VyYW5jZSA8LSByZWFkLmNzdigiaW5zdXJhbmNlLmNzdiIsIHN0cmluZ3NBc0ZhY3RvcnMgPSBUUlVFKQpzdHIoaW5zdXJhbmNlKQpgYGAKCmBgYHtyfQojIHN1bW1hcml6ZSB0aGUgY2hhcmdlcyB2YXJpYWJsZQpzdW1tYXJ5KGluc3VyYW5jZSRleHBlbnNlcykKYGBgCgpgYGB7cn0KIyBoaXN0b2dyYW0gb2YgaW5zdXJhbmNlIGNoYXJnZXMKaGlzdChpbnN1cmFuY2UkZXhwZW5zZXMpCmBgYAoKCgpgYGB7cn0KIyB0YWJsZSBvZiByZWdpb24KdGFibGUoaW5zdXJhbmNlJHJlZ2lvbikKYGBgCgpgYGB7cn0KIyBleHBsb3JpbmcgcmVsYXRpb25zaGlwcyBhbW9uZyBmZWF0dXJlczogY29ycmVsYXRpb24gbWF0cml4CmNvcihpbnN1cmFuY2VbYygiYWdlIiwgImJtaSIsICJjaGlsZHJlbiIsICJleHBlbnNlcyIpXSkKYGBgCgpgYGB7cn0KIyB2aXN1YWxpbmcgcmVsYXRpb25zaGlwcyBhbW9uZyBmZWF0dXJlczogc2NhdHRlcnBsb3QgbWF0cml4CnBhaXJzKGluc3VyYW5jZVtjKCJhZ2UiLCAiYm1pIiwgImNoaWxkcmVuIiwgImV4cGVuc2VzIildKQpgYGAKCmBgYHtyfQojIyBTdGVwIDM6IFRyYWluaW5nIGEgbW9kZWwgb24gdGhlIGRhdGEgLS0tLQppbnNfbW9kZWwgPC0gbG0oZXhwZW5zZXMgfiBhZ2UgKyBjaGlsZHJlbiArIGJtaSArIHNleCArIHNtb2tlciArIHJlZ2lvbiwKICAgICAgICAgICAgICAgIGRhdGEgPSBpbnN1cmFuY2UpCmluc19tb2RlbCA8LSBsbShleHBlbnNlcyB+IC4sIGRhdGEgPSBpbnN1cmFuY2UpICMgdGhpcyBpcyBlcXVpdmFsZW50IHRvIGFib3ZlCgojIHNlZSB0aGUgZXN0aW1hdGVkIGJldGEgY29lZmZpY2llbnRzCmluc19tb2RlbApgYGAKCmBgYHtyfQojIHNlZSBtb3JlIGRldGFpbCBhYm91dCB0aGUgZXN0aW1hdGVkIGJldGEgY29lZmZpY2llbnRzCnN1bW1hcnkoaW5zX21vZGVsKQpgYGAKCmBgYHtyfQojIGFkZCBhIGhpZ2hlci1vcmRlciAiYWdlIiB0ZXJtCmluc3VyYW5jZSRhZ2UyIDwtIGluc3VyYW5jZSRhZ2VeMgpgYGAKCgoKYGBge3J9CiMgYWRkIGFuIGluZGljYXRvciBmb3IgQk1JID49IDMwCmluc3VyYW5jZSRibWkzMCA8LSBpZmVsc2UoaW5zdXJhbmNlJGJtaSA+PSAzMCwgMSwgMCkKYGBgCgoKCmBgYHtyfQojIGNyZWF0ZSBmaW5hbCBtb2RlbAppbnNfbW9kZWwyIDwtIGxtKGV4cGVuc2VzIH4gYWdlICsgYWdlMiArIGNoaWxkcmVuICsgYm1pICsgc2V4ICsKICAgICAgICAgICAgICAgICAgIGJtaTMwKnNtb2tlciArIHJlZ2lvbiwgZGF0YSA9IGluc3VyYW5jZSkKYGBgCgpgYGB7cn0Kc3VtbWFyeShpbnNfbW9kZWwyKQpgYGAKCgoKYGBge3J9CiMgbWFraW5nIHByZWRpY3Rpb25zIHdpdGggdGhlIHJlZ3Jlc3Npb24gbW9kZWwKaW5zdXJhbmNlJHByZWQgPC0gcHJlZGljdChpbnNfbW9kZWwyLCBpbnN1cmFuY2UpCmNvcihpbnN1cmFuY2UkcHJlZCwgaW5zdXJhbmNlJGV4cGVuc2VzKQpgYGAKCmBgYHtyfQpwbG90KGluc3VyYW5jZSRwcmVkLCBpbnN1cmFuY2UkZXhwZW5zZXMpCmFibGluZShhID0gMCwgYiA9IDEsIGNvbCA9ICJyZWQiLCBsd2QgPSAzLCBsdHkgPSAyKQpgYGAKCgoKYGBge3J9CnByZWRpY3QoaW5zX21vZGVsMiwKICAgICAgICBkYXRhLmZyYW1lKGFnZSA9IDMwLCBhZ2UyID0gMzBeMiwgY2hpbGRyZW4gPSAyLAogICAgICAgICAgICAgICAgICAgYm1pID0gMzAsIHNleCA9ICJtYWxlIiwgYm1pMzAgPSAxLAogICAgICAgICAgICAgICAgICAgc21va2VyID0gIm5vIiwgcmVnaW9uID0gIm5vcnRoZWFzdCIpKQpgYGAKCmBgYHtyfQpwcmVkaWN0KGluc19tb2RlbDIsCiAgICAgICAgZGF0YS5mcmFtZShhZ2UgPSAzMCwgYWdlMiA9IDMwXjIsIGNoaWxkcmVuID0gMiwKICAgICAgICAgICAgICAgICAgIGJtaSA9IDMwLCBzZXggPSAiZmVtYWxlIiwgYm1pMzAgPSAxLAogICAgICAgICAgICAgICAgICAgc21va2VyID0gIm5vIiwgcmVnaW9uID0gIm5vcnRoZWFzdCIpKQpgYGAKCmBgYHtyfQpwcmVkaWN0KGluc19tb2RlbDIsCiAgICAgICAgZGF0YS5mcmFtZShhZ2UgPSAzMCwgYWdlMiA9IDMwXjIsIGNoaWxkcmVuID0gMCwKICAgICAgICAgICAgICAgICAgIGJtaSA9IDMwLCBzZXggPSAiZmVtYWxlIiwgYm1pMzAgPSAxLAogICAgICAgICAgICAgICAgICAgc21va2VyID0gIm5vIiwgcmVnaW9uID0gIm5vcnRoZWFzdCIpKQpgYGAKCgo=