Reading the csv
launch <- read.csv("challenger2.csv")
launch
Calculating the temp manually
b <- cov(launch$temperature, launch$distress_ct) / var(launch$temperature)
b
[1] -0.03364796
Estimating alpha manually
a <- mean(launch$distress_ct) - b * mean(launch$temperature)
a
[1] 2.814585
Calculating the correlation with different methods, first
default:
r <- cov(launch$temperature, launch$distress_ct,) /
(sd(launch$temperature) * sd(launch$distress_ct))
r
[1] -0.3359996
Calculating the correlation with different methods, spear
method:
r <- cov(launch$temperature, launch$distress_ct, method = "spearman") /
(sd(launch$temperature) * sd(launch$distress_ct))
r
[1] -3.897924
cor(launch$temperature, launch$distress_ct)
[1] -0.3359996
computing the slope using correlation
r * (sd(launch$distress_ct) / sd(launch$temperature))
[1] -0.3903492
confirming the regression line using the lm function
model <- lm(distress_ct ~ temperature, data = launch)
model
Call:
lm(formula = distress_ct ~ temperature, data = launch)
Coefficients:
(Intercept) temperature
2.81458 -0.03365
summary(model)
Call:
lm(formula = distress_ct ~ temperature, data = launch)
Residuals:
Min 1Q Median 3Q Max
-1.0649 -0.4929 -0.2573 0.3052 1.7090
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.81458 1.24629 2.258 0.0322 *
temperature -0.03365 0.01815 -1.854 0.0747 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7076 on 27 degrees of freedom
Multiple R-squared: 0.1129, Adjusted R-squared: 0.08004
F-statistic: 3.436 on 1 and 27 DF, p-value: 0.07474
creating SMR function
reg <- function(y, x) {
x <- as.matrix(x)
x <- cbind(Intercept = 1, x)
b <- solve(t(x) %*% x) %*% t(x) %*% y
colnames(b) <- "estimate"
print(b)
}
examine the launch data
str(launch)
'data.frame': 29 obs. of 4 variables:
$ distress_ct : int 0 1 0 0 0 0 0 0 1 1 ...
$ temperature : int 66 70 69 68 67 72 73 70 57 63 ...
$ field_check_pressure: int 50 50 50 50 50 50 100 100 200 200 ...
$ flight_num : int 1 2 3 4 5 6 7 8 9 10 ...
test regression model with simple linear regression
reg(y = launch$distress_ct, x = launch[2])
estimate
Intercept 2.81458456
temperature -0.03364796
use regression model with multiple regression
reg(y = launch$distress_ct, x = launch[2:4])
estimate
Intercept 2.239817e+00
temperature -3.124185e-02
field_check_pressure -2.586765e-05
flight_num 2.762455e-02
confirming the multiple regression result using the lm function
model <- lm(distress_ct ~ temperature + field_check_pressure + flight_num, data = launch)
model
Call:
lm(formula = distress_ct ~ temperature + field_check_pressure +
flight_num, data = launch)
Coefficients:
(Intercept) temperature field_check_pressure
2.240e+00 -3.124e-02 -2.587e-05
flight_num
2.762e-02
summary(model)
Call:
lm(formula = distress_ct ~ temperature + field_check_pressure +
flight_num, data = launch)
Residuals:
Min 1Q Median 3Q Max
-0.65003 -0.24414 -0.11219 0.01279 1.67530
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.527093 1.307024 2.699 0.0142 *
temperature -0.051386 0.018341 -2.802 0.0114 *
field_check_pressure 0.001757 0.003402 0.517 0.6115
flight_num 0.014293 0.035138 0.407 0.6887
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.565 on 19 degrees of freedom
Multiple R-squared: 0.36, Adjusted R-squared: 0.259
F-statistic: 3.563 on 3 and 19 DF, p-value: 0.03371
The model performs slightly better on the challenger2 dataset.
LS0tCnRpdGxlOiAiWW91c3NlZi1NTFItQWN0aXZpdHktNyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKIyMjIFJlYWRpbmcgdGhlIGNzdiAKYGBge3J9CgpsYXVuY2ggPC0gcmVhZC5jc3YoImNoYWxsZW5nZXIyLmNzdiIpCmxhdW5jaApgYGAKCgojIyMgQ2FsY3VsYXRpbmcgdGhlIHRlbXAgbWFudWFsbHkgCmBgYHtyfQpiIDwtIGNvdihsYXVuY2gkdGVtcGVyYXR1cmUsIGxhdW5jaCRkaXN0cmVzc19jdCkgLyB2YXIobGF1bmNoJHRlbXBlcmF0dXJlKQpiCmBgYAoKCiMjIyBFc3RpbWF0aW5nIGFscGhhIG1hbnVhbGx5IApgYGB7cn0KYSA8LSBtZWFuKGxhdW5jaCRkaXN0cmVzc19jdCkgLSBiICogbWVhbihsYXVuY2gkdGVtcGVyYXR1cmUpCmEKCmBgYAoKIyMjIENhbGN1bGF0aW5nIHRoZSBjb3JyZWxhdGlvbiB3aXRoIGRpZmZlcmVudCBtZXRob2RzLCBmaXJzdCBkZWZhdWx0OiAKYGBge3J9CnIgPC0gY292KGxhdW5jaCR0ZW1wZXJhdHVyZSwgbGF1bmNoJGRpc3RyZXNzX2N0LCkgLwogICAgICAgKHNkKGxhdW5jaCR0ZW1wZXJhdHVyZSkgKiBzZChsYXVuY2gkZGlzdHJlc3NfY3QpKQpyCmBgYAojIyMgQ2FsY3VsYXRpbmcgdGhlIGNvcnJlbGF0aW9uIHdpdGggZGlmZmVyZW50IG1ldGhvZHMsIHNwZWFyIG1ldGhvZDogCmBgYHtyfQpyIDwtIGNvdihsYXVuY2gkdGVtcGVyYXR1cmUsIGxhdW5jaCRkaXN0cmVzc19jdCwgbWV0aG9kID0gInNwZWFybWFuIikgLwogICAgICAgKHNkKGxhdW5jaCR0ZW1wZXJhdHVyZSkgKiBzZChsYXVuY2gkZGlzdHJlc3NfY3QpKQpyCmBgYApgYGB7cn0KY29yKGxhdW5jaCR0ZW1wZXJhdHVyZSwgbGF1bmNoJGRpc3RyZXNzX2N0KQoKYGBgCgojIyMgY29tcHV0aW5nIHRoZSBzbG9wZSB1c2luZyBjb3JyZWxhdGlvbgoKCmBgYHtyfQpyICogKHNkKGxhdW5jaCRkaXN0cmVzc19jdCkgLyBzZChsYXVuY2gkdGVtcGVyYXR1cmUpKQpgYGAKCiMjIyBjb25maXJtaW5nIHRoZSByZWdyZXNzaW9uIGxpbmUgdXNpbmcgdGhlIGxtIGZ1bmN0aW9uCgoKYGBge3J9Cm1vZGVsIDwtIGxtKGRpc3RyZXNzX2N0IH4gdGVtcGVyYXR1cmUsIGRhdGEgPSBsYXVuY2gpCm1vZGVsCgpgYGAKCmBgYHtyfQpzdW1tYXJ5KG1vZGVsKQpgYGAKCiMjIyBjcmVhdGluZyBTTVIgZnVuY3Rpb24gCmBgYHtyfQpyZWcgPC0gZnVuY3Rpb24oeSwgeCkgewogIHggPC0gYXMubWF0cml4KHgpCiAgeCA8LSBjYmluZChJbnRlcmNlcHQgPSAxLCB4KQogIGIgPC0gc29sdmUodCh4KSAlKiUgeCkgJSolIHQoeCkgJSolIHkKICBjb2xuYW1lcyhiKSA8LSAiZXN0aW1hdGUiCiAgcHJpbnQoYikKfQpgYGAKCiMjIyBleGFtaW5lIHRoZSBsYXVuY2ggZGF0YQoKYGBge3J9CnN0cihsYXVuY2gpCgpgYGAKCiMjIyB0ZXN0IHJlZ3Jlc3Npb24gbW9kZWwgd2l0aCBzaW1wbGUgbGluZWFyIHJlZ3Jlc3Npb24KYGBge3J9CnJlZyh5ID0gbGF1bmNoJGRpc3RyZXNzX2N0LCB4ID0gbGF1bmNoWzJdKQoKYGBgCgoKIyMjIHVzZSByZWdyZXNzaW9uIG1vZGVsIHdpdGggbXVsdGlwbGUgcmVncmVzc2lvbgoKYGBge3J9CnJlZyh5ID0gbGF1bmNoJGRpc3RyZXNzX2N0LCB4ID0gbGF1bmNoWzI6NF0pCgpgYGAKCiMjIyBjb25maXJtaW5nIHRoZSBtdWx0aXBsZSByZWdyZXNzaW9uIHJlc3VsdCB1c2luZyB0aGUgbG0gZnVuY3Rpb24KYGBge3J9Cm1vZGVsIDwtIGxtKGRpc3RyZXNzX2N0IH4gdGVtcGVyYXR1cmUgKyBmaWVsZF9jaGVja19wcmVzc3VyZSArIGZsaWdodF9udW0sIGRhdGEgPSBsYXVuY2gpCm1vZGVsCmBgYAoKYGBge3J9CnN1bW1hcnkobW9kZWwpCmBgYAojIyMgVGhlIG1vZGVsIHBlcmZvcm1zIHNsaWdodGx5IGJldHRlciBvbiB0aGUgY2hhbGxlbmdlcjIgZGF0YXNldC4gCgoKCg==