launch<-read.csv('challenger2.csv')
b <- cov(launch$temperature, launch$distress_ct) / var(launch$temperature)
b
[1] -0.03364796
a <- mean(launch$distress_ct) - b * mean(launch$temperature)
a
[1] 2.814585
# calculate the correlation of launch data
r <- cov(launch$temperature, launch$distress_ct) /
(sd(launch$temperature) * sd(launch$distress_ct))
r
[1] -0.3359996
cor(launch$temperature, launch$distress_ct)
[1] -0.3359996
# computing the slope using correlation
r * (sd(launch$distress_ct) / sd(launch$temperature))
[1] -0.03364796
# confirming the regression line using the lm function (not in text)
model <- lm(distress_ct ~ temperature, data = launch)
model
Call:
lm(formula = distress_ct ~ temperature, data = launch)
Coefficients:
(Intercept) temperature
2.81458 -0.03365
summary(model)
Call:
lm(formula = distress_ct ~ temperature, data = launch)
Residuals:
Min 1Q Median 3Q Max
-1.0649 -0.4929 -0.2573 0.3052 1.7090
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.81458 1.24629 2.258 0.0322 *
temperature -0.03365 0.01815 -1.854 0.0747 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7076 on 27 degrees of freedom
Multiple R-squared: 0.1129, Adjusted R-squared: 0.08004
F-statistic: 3.436 on 1 and 27 DF, p-value: 0.07474
# creating a simple multiple regression function
reg <- function(y, x) {
x <- as.matrix(x)
x <- cbind(Intercept = 1, x)
b <- solve(t(x) %*% x) %*% t(x) %*% y
colnames(b) <- "estimate"
print(b)
}
# examine the launch data
str(launch)
'data.frame': 29 obs. of 4 variables:
$ distress_ct : int 0 1 0 0 0 0 0 0 1 1 ...
$ temperature : int 66 70 69 68 67 72 73 70 57 63 ...
$ field_check_pressure: int 50 50 50 50 50 50 100 100 200 200 ...
$ flight_num : int 1 2 3 4 5 6 7 8 9 10 ...
# test regression model with simple linear regression
reg(y = launch$distress_ct, x = launch[2])
estimate
Intercept 2.81458456
temperature -0.03364796
# use regression model with multiple regression
reg(y = launch$distress_ct, x = launch[2:4])
estimate
Intercept 2.239817e+00
temperature -3.124185e-02
field_check_pressure -2.586765e-05
flight_num 2.762455e-02
# confirming the multiple regression result using the lm function (not in text)
model <- lm(distress_ct ~ temperature + field_check_pressure + flight_num, data = launch)
model
Call:
lm(formula = distress_ct ~ temperature + field_check_pressure +
flight_num, data = launch)
Coefficients:
(Intercept) temperature field_check_pressure
2.240e+00 -3.124e-02 -2.587e-05
flight_num
2.762e-02
summary(model)
Call:
lm(formula = distress_ct ~ temperature + field_check_pressure +
flight_num, data = launch)
Residuals:
Min 1Q Median 3Q Max
-1.2744 -0.3335 -0.1657 0.2975 1.5284
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.240e+00 1.267e+00 1.767 0.0894 .
temperature -3.124e-02 1.787e-02 -1.748 0.0927 .
field_check_pressure -2.587e-05 2.383e-03 -0.011 0.9914
flight_num 2.762e-02 1.798e-02 1.537 0.1369
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.6926 on 25 degrees of freedom
Multiple R-squared: 0.2132, Adjusted R-squared: 0.1188
F-statistic: 2.259 on 3 and 25 DF, p-value: 0.1063
LS0tCnRpdGxlOiAibGluZWFyX3JlZ3Jlc3Npb25fcGFydDEiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyfQpsYXVuY2g8LXJlYWQuY3N2KCdjaGFsbGVuZ2VyMi5jc3YnKQpgYGAKCgpgYGB7cn0KYiA8LSBjb3YobGF1bmNoJHRlbXBlcmF0dXJlLCBsYXVuY2gkZGlzdHJlc3NfY3QpIC8gdmFyKGxhdW5jaCR0ZW1wZXJhdHVyZSkKYGBgCgpgYGB7cn0KYgpgYGAKCmBgYHtyfQphIDwtIG1lYW4obGF1bmNoJGRpc3RyZXNzX2N0KSAtIGIgKiBtZWFuKGxhdW5jaCR0ZW1wZXJhdHVyZSkKYQpgYGAKCmBgYHtyfQojIGNhbGN1bGF0ZSB0aGUgY29ycmVsYXRpb24gb2YgbGF1bmNoIGRhdGEKciA8LSBjb3YobGF1bmNoJHRlbXBlcmF0dXJlLCBsYXVuY2gkZGlzdHJlc3NfY3QpIC8KICAgICAgIChzZChsYXVuY2gkdGVtcGVyYXR1cmUpICogc2QobGF1bmNoJGRpc3RyZXNzX2N0KSkKcgpgYGAKCmBgYHtyfQpjb3IobGF1bmNoJHRlbXBlcmF0dXJlLCBsYXVuY2gkZGlzdHJlc3NfY3QpCmBgYAoKYGBge3J9CiMgY29tcHV0aW5nIHRoZSBzbG9wZSB1c2luZyBjb3JyZWxhdGlvbgpyICogKHNkKGxhdW5jaCRkaXN0cmVzc19jdCkgLyBzZChsYXVuY2gkdGVtcGVyYXR1cmUpKQpgYGAKCmBgYHtyfQojIGNvbmZpcm1pbmcgdGhlIHJlZ3Jlc3Npb24gbGluZSB1c2luZyB0aGUgbG0gZnVuY3Rpb24gKG5vdCBpbiB0ZXh0KQptb2RlbCA8LSBsbShkaXN0cmVzc19jdCB+IHRlbXBlcmF0dXJlLCBkYXRhID0gbGF1bmNoKQptb2RlbApgYGAKCmBgYHtyfQpzdW1tYXJ5KG1vZGVsKQpgYGAKYGBge3J9CiMgY3JlYXRpbmcgYSBzaW1wbGUgbXVsdGlwbGUgcmVncmVzc2lvbiBmdW5jdGlvbgpyZWcgPC0gZnVuY3Rpb24oeSwgeCkgewogIHggPC0gYXMubWF0cml4KHgpCiAgeCA8LSBjYmluZChJbnRlcmNlcHQgPSAxLCB4KQogIGIgPC0gc29sdmUodCh4KSAlKiUgeCkgJSolIHQoeCkgJSolIHkKICBjb2xuYW1lcyhiKSA8LSAiZXN0aW1hdGUiCiAgcHJpbnQoYikKfQoKYGBgCgoKYGBge3J9CiMgZXhhbWluZSB0aGUgbGF1bmNoIGRhdGEKc3RyKGxhdW5jaCkKYGBgCgpgYGB7cn0KIyB0ZXN0IHJlZ3Jlc3Npb24gbW9kZWwgd2l0aCBzaW1wbGUgbGluZWFyIHJlZ3Jlc3Npb24KcmVnKHkgPSBsYXVuY2gkZGlzdHJlc3NfY3QsIHggPSBsYXVuY2hbMl0pCmBgYAoKYGBge3J9CiMgdXNlIHJlZ3Jlc3Npb24gbW9kZWwgd2l0aCBtdWx0aXBsZSByZWdyZXNzaW9uCnJlZyh5ID0gbGF1bmNoJGRpc3RyZXNzX2N0LCB4ID0gbGF1bmNoWzI6NF0pCmBgYAoKCgoKYGBge3J9CiMgY29uZmlybWluZyB0aGUgbXVsdGlwbGUgcmVncmVzc2lvbiByZXN1bHQgdXNpbmcgdGhlIGxtIGZ1bmN0aW9uIChub3QgaW4gdGV4dCkKbW9kZWwgPC0gbG0oZGlzdHJlc3NfY3QgfiB0ZW1wZXJhdHVyZSArIGZpZWxkX2NoZWNrX3ByZXNzdXJlICsgZmxpZ2h0X251bSwgZGF0YSA9IGxhdW5jaCkKbW9kZWwKYGBgCgoKCgpgYGB7cn0Kc3VtbWFyeShtb2RlbCkKYGBgCgoKCgoKCgoKCgoK