launch<-read.csv('challenger2.csv')
b <- cov(launch$temperature, launch$distress_ct) / var(launch$temperature)
b
[1] -0.03364796
a <- mean(launch$distress_ct) - b * mean(launch$temperature)
a
[1] 2.814585
# calculate the correlation of launch data
r <- cov(launch$temperature, launch$distress_ct) /
       (sd(launch$temperature) * sd(launch$distress_ct))
r
[1] -0.3359996
cor(launch$temperature, launch$distress_ct)
[1] -0.3359996
# computing the slope using correlation
r * (sd(launch$distress_ct) / sd(launch$temperature))
[1] -0.03364796
# confirming the regression line using the lm function (not in text)
model <- lm(distress_ct ~ temperature, data = launch)
model

Call:
lm(formula = distress_ct ~ temperature, data = launch)

Coefficients:
(Intercept)  temperature  
    2.81458     -0.03365  
summary(model)

Call:
lm(formula = distress_ct ~ temperature, data = launch)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.0649 -0.4929 -0.2573  0.3052  1.7090 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)  2.81458    1.24629   2.258   0.0322 *
temperature -0.03365    0.01815  -1.854   0.0747 .
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7076 on 27 degrees of freedom
Multiple R-squared:  0.1129,    Adjusted R-squared:  0.08004 
F-statistic: 3.436 on 1 and 27 DF,  p-value: 0.07474
# creating a simple multiple regression function
reg <- function(y, x) {
  x <- as.matrix(x)
  x <- cbind(Intercept = 1, x)
  b <- solve(t(x) %*% x) %*% t(x) %*% y
  colnames(b) <- "estimate"
  print(b)
}
# examine the launch data
str(launch)
'data.frame':   29 obs. of  4 variables:
 $ distress_ct         : int  0 1 0 0 0 0 0 0 1 1 ...
 $ temperature         : int  66 70 69 68 67 72 73 70 57 63 ...
 $ field_check_pressure: int  50 50 50 50 50 50 100 100 200 200 ...
 $ flight_num          : int  1 2 3 4 5 6 7 8 9 10 ...
# test regression model with simple linear regression
reg(y = launch$distress_ct, x = launch[2])
               estimate
Intercept    2.81458456
temperature -0.03364796
# use regression model with multiple regression
reg(y = launch$distress_ct, x = launch[2:4])
                          estimate
Intercept             2.239817e+00
temperature          -3.124185e-02
field_check_pressure -2.586765e-05
flight_num            2.762455e-02
# confirming the multiple regression result using the lm function (not in text)
model <- lm(distress_ct ~ temperature + field_check_pressure + flight_num, data = launch)
model

Call:
lm(formula = distress_ct ~ temperature + field_check_pressure + 
    flight_num, data = launch)

Coefficients:
         (Intercept)           temperature  field_check_pressure  
           2.240e+00            -3.124e-02            -2.587e-05  
          flight_num  
           2.762e-02  
summary(model)

Call:
lm(formula = distress_ct ~ temperature + field_check_pressure + 
    flight_num, data = launch)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.2744 -0.3335 -0.1657  0.2975  1.5284 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)  
(Intercept)           2.240e+00  1.267e+00   1.767   0.0894 .
temperature          -3.124e-02  1.787e-02  -1.748   0.0927 .
field_check_pressure -2.587e-05  2.383e-03  -0.011   0.9914  
flight_num            2.762e-02  1.798e-02   1.537   0.1369  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6926 on 25 degrees of freedom
Multiple R-squared:  0.2132,    Adjusted R-squared:  0.1188 
F-statistic: 2.259 on 3 and 25 DF,  p-value: 0.1063
LS0tCnRpdGxlOiAibGluZWFyX3JlZ3Jlc3Npb25fcGFydDEiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyfQpsYXVuY2g8LXJlYWQuY3N2KCdjaGFsbGVuZ2VyMi5jc3YnKQpgYGAKCgpgYGB7cn0KYiA8LSBjb3YobGF1bmNoJHRlbXBlcmF0dXJlLCBsYXVuY2gkZGlzdHJlc3NfY3QpIC8gdmFyKGxhdW5jaCR0ZW1wZXJhdHVyZSkKYGBgCgpgYGB7cn0KYgpgYGAKCmBgYHtyfQphIDwtIG1lYW4obGF1bmNoJGRpc3RyZXNzX2N0KSAtIGIgKiBtZWFuKGxhdW5jaCR0ZW1wZXJhdHVyZSkKYQpgYGAKCmBgYHtyfQojIGNhbGN1bGF0ZSB0aGUgY29ycmVsYXRpb24gb2YgbGF1bmNoIGRhdGEKciA8LSBjb3YobGF1bmNoJHRlbXBlcmF0dXJlLCBsYXVuY2gkZGlzdHJlc3NfY3QpIC8KICAgICAgIChzZChsYXVuY2gkdGVtcGVyYXR1cmUpICogc2QobGF1bmNoJGRpc3RyZXNzX2N0KSkKcgpgYGAKCmBgYHtyfQpjb3IobGF1bmNoJHRlbXBlcmF0dXJlLCBsYXVuY2gkZGlzdHJlc3NfY3QpCmBgYAoKYGBge3J9CiMgY29tcHV0aW5nIHRoZSBzbG9wZSB1c2luZyBjb3JyZWxhdGlvbgpyICogKHNkKGxhdW5jaCRkaXN0cmVzc19jdCkgLyBzZChsYXVuY2gkdGVtcGVyYXR1cmUpKQpgYGAKCmBgYHtyfQojIGNvbmZpcm1pbmcgdGhlIHJlZ3Jlc3Npb24gbGluZSB1c2luZyB0aGUgbG0gZnVuY3Rpb24gKG5vdCBpbiB0ZXh0KQptb2RlbCA8LSBsbShkaXN0cmVzc19jdCB+IHRlbXBlcmF0dXJlLCBkYXRhID0gbGF1bmNoKQptb2RlbApgYGAKCmBgYHtyfQpzdW1tYXJ5KG1vZGVsKQpgYGAKYGBge3J9CiMgY3JlYXRpbmcgYSBzaW1wbGUgbXVsdGlwbGUgcmVncmVzc2lvbiBmdW5jdGlvbgpyZWcgPC0gZnVuY3Rpb24oeSwgeCkgewogIHggPC0gYXMubWF0cml4KHgpCiAgeCA8LSBjYmluZChJbnRlcmNlcHQgPSAxLCB4KQogIGIgPC0gc29sdmUodCh4KSAlKiUgeCkgJSolIHQoeCkgJSolIHkKICBjb2xuYW1lcyhiKSA8LSAiZXN0aW1hdGUiCiAgcHJpbnQoYikKfQoKYGBgCgoKYGBge3J9CiMgZXhhbWluZSB0aGUgbGF1bmNoIGRhdGEKc3RyKGxhdW5jaCkKYGBgCgpgYGB7cn0KIyB0ZXN0IHJlZ3Jlc3Npb24gbW9kZWwgd2l0aCBzaW1wbGUgbGluZWFyIHJlZ3Jlc3Npb24KcmVnKHkgPSBsYXVuY2gkZGlzdHJlc3NfY3QsIHggPSBsYXVuY2hbMl0pCmBgYAoKYGBge3J9CiMgdXNlIHJlZ3Jlc3Npb24gbW9kZWwgd2l0aCBtdWx0aXBsZSByZWdyZXNzaW9uCnJlZyh5ID0gbGF1bmNoJGRpc3RyZXNzX2N0LCB4ID0gbGF1bmNoWzI6NF0pCmBgYAoKCgoKYGBge3J9CiMgY29uZmlybWluZyB0aGUgbXVsdGlwbGUgcmVncmVzc2lvbiByZXN1bHQgdXNpbmcgdGhlIGxtIGZ1bmN0aW9uIChub3QgaW4gdGV4dCkKbW9kZWwgPC0gbG0oZGlzdHJlc3NfY3QgfiB0ZW1wZXJhdHVyZSArIGZpZWxkX2NoZWNrX3ByZXNzdXJlICsgZmxpZ2h0X251bSwgZGF0YSA9IGxhdW5jaCkKbW9kZWwKYGBgCgoKCgpgYGB7cn0Kc3VtbWFyeShtb2RlbCkKYGBgCgoKCgoKCgoKCgoK