Dr. Kristen Gorman with the Palmer Station Long Term Ecological Research Program set out to study the impact of Ecological Sexual Dimorphism in arctic penguins. In 2014, that particular study compared deep-dive foraging habits of male and female penguins and how that resulted in different biological outcomes. To read more abut it, you can go to read the full study here. And you can find more of Dr. Gorman’s more recent work here

We only have a portion of the data from the larger scale study, so our goals and scope of analysis will be different. Our aim is to determine which factors impact the body mass of a penguin. This is useful to know as body mass is an important indicator of penguin’s health.

Our data table contains the following columns:

Unit 2.1 Qualitative Variables

Step 1: Collect the Data

pendata<-read.csv("https://raw.githubusercontent.com/kvaranyak4/STAT3220/main/penguins.csv")
head(pendata)
names(pendata)
## [1] "Observation"       "body_mass_g"       "species"          
## [4] "island"            "bill_length_mm"    "bill_depth_mm"    
## [7] "flipper_length_mm" "sex"               "year"
hist(pendata$body_mass_g, xlab="Body Mass", main="Histogram of Body Mass (in grams)") 

ADD YOUR NOTES ON THE SHAPE + DISTRIBUTION OF RESPONSE:

Step 2: Hypothesize Relationship (Exploratory Data Analysis)

RECALL: Our goal through the exploratory data analysis phase is to identify the individual relationships between the explanatory variables and the response.

In this example we will evaluate the qualitative variables species (with three levels) and sex (with two levels)

#Summary Statistics for response variable grouped by each level of the response
tapply(pendata$body_mass_g,pendata$species,summary)
$Adelie
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   2850    3350    3700    3701    4000    4775       1 

$Chinstrap
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   2700    3488    3700    3733    3950    4800 

$Gentoo
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   3950    4700    5000    5076    5500    6300       1 
tapply(pendata$body_mass_g,pendata$sex,summary)
$female
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   2700    3350    3650    3862    4550    5200 

$male
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   3250    3900    4300    4546    5312    6300 
#Box plots for species and sex
boxplot(body_mass_g~species,pendata, ylab="Body Mass (grams)")

boxplot(body_mass_g~sex,pendata, ylab="Body Mass (grams)")

\(E(bodymass)=\beta_0+\beta_1 SpeciesC+\beta_2 SpeciesG+\beta_3 SexM\)

What does each \(\beta\) coefficient represent?

Step 3: Estimate the model parameters (fit the model using R)

#note: the syntax in R does not necessarily match the parameters
penmod1<-lm(body_mass_g~species+sex,data=pendata)
summary(penmod1)

Call:
lm(formula = body_mass_g ~ species + sex, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-816.87 -217.80  -16.87  227.61  882.20 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)       3372.39      31.43 107.308   <2e-16 ***
speciesChinstrap    26.92      46.48   0.579    0.563    
speciesGentoo     1377.86      39.10  35.236   <2e-16 ***
sexmale            667.56      34.70  19.236   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 316.6 on 329 degrees of freedom
  (11 observations deleted due to missingness)
Multiple R-squared:  0.8468,    Adjusted R-squared:  0.8454 
F-statistic: 606.1 on 3 and 329 DF,  p-value: < 2.2e-16

The prediction equation is:

\(\widehat{bodymass}=3372.39+26.92SpeciesC+1377.86SpeciesG+667.56SexM\)

Interpret the estimates

  • The estimated mean body mass for Adelie female penguins is 3372.39 grams.
  • The estimated mean body mass for Chinstrap penguins is 26.92 grams higher than Adelie penguins, given gender is held constant.
  • The estimated mean body mass for Gentoo penguins is 1377.86 grams higher than Adelie penguins, given gender is held constant.
  • The estimated mean body mass for male penguins is 667.56 grams higher than female penguins, given species is held constant.

Note

We can recode our base level using the relevel function. This is optional, but could be useful if we have a particular interest group.

In this example, Gentoo appears to be the most different from the other species, so it might be useful to define it as the base level. Then each of our estimates will compare to Gentoo.

#This is only done if we desire to change the base level 
recodedSpecies<-relevel(factor(pendata$species),ref="Gentoo")
penmod6<-lm(body_mass_g~recodedSpecies,data=pendata)
summary(penmod6)

Call:
lm(formula = body_mass_g ~ recodedSpecies, data = pendata)

Residuals:
     Min       1Q   Median       3Q      Max 
-1126.02  -333.09   -33.09   316.91  1223.98 

Coefficients:
                        Estimate Std. Error t value Pr(>|t|)    
(Intercept)              5076.02      41.68  121.78   <2e-16 ***
recodedSpeciesAdelie    -1375.35      56.15  -24.50   <2e-16 ***
recodedSpeciesChinstrap -1342.93      69.86  -19.22   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 462.3 on 339 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared:  0.6697,    Adjusted R-squared:  0.6677 
F-statistic: 343.6 on 2 and 339 DF,  p-value: < 2.2e-16

Step 4: Specify the distribution of the errors and find the estimate of the variance

Step 5: Evaluate the Utility of the model

Recall the model:

\(E(bodymass)=\beta_0+\beta_1 SpeciesC+\beta_2 SpeciesG+\beta_3 SexM\)

First we Perform the Global F Test:

  • Hypotheses:

    • \(H_0: \beta_1= \beta_2=\beta_3=0\) (the model is not adequate)
    • \(H_a\):at least one of \(\beta_1 , \beta_2 , \beta_3\) does not equal 0 (the model is adequate)
  • Distribution of test statistic: F with 3, 329 DF

  • Test Statistic: F=606.1

  • Pvalue: <0.0000001

  • Decision: pvalue<0.05 -> REJECT H0

  • Conclusion: The model with species and sex is adequate at body mass for the penguins.

What terms can we test “individually?”

  • Species is determined by two parameters (since SpeciesC and SpeciesG are the dummy variables), so we would want to keep or remove BOTH of those dummy variables. We will cover this later.

  • We can test sex because it is only associated with one parameter in the model.

  • Hypotheses:

    • \(H_0: \beta_3=0\)
    • \(H_a:\beta_3 \neq 0\)
  • Distribution of test statistic: T with 329 DF

  • Test Statistic: t=19.236

  • Pvalue: <0.0000001

  • Decision: pvalue<0.05 -> REJECT H0

  • Conclusion: The sex of the penguin is significant at predicting the body mass of a penguin given species is a constant in the model. We will keep it in the model.

Quantitative predictors

Note we can include both qualitative and quantitative predictors in the model.

penmod2<-lm(body_mass_g~species+sex+bill_depth_mm,data=pendata)
summary(penmod2)

Call:
lm(formula = body_mass_g ~ species + sex + bill_depth_mm, data = pendata)

Residuals:
   Min     1Q Median     3Q    Max 
-851.2 -187.7   -3.5  221.7  936.3 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)       1576.99     357.08   4.416 1.37e-05 ***
speciesChinstrap    19.44      44.87   0.433    0.665    
speciesGentoo     1721.70      77.88  22.106  < 2e-16 ***
sexmale            513.99      45.24  11.360  < 2e-16 ***
bill_depth_mm      102.04      20.22   5.046 7.48e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 305.5 on 328 degrees of freedom
  (11 observations deleted due to missingness)
Multiple R-squared:  0.8578,    Adjusted R-squared:  0.8561 
F-statistic: 494.8 on 4 and 328 DF,  p-value: < 2.2e-16

Write the model that was fit

\(E(bodymass)=\beta_0+\beta_1 SpeciesC+\beta_2 SpeciesG+\beta_3 SexM+\beta_4BillDepth\)

  • where SpeciesC= 1 if Chinstrap, 0 otherwise
  • SpeciesG - 1 if Gentoo, 0 otherwise
  • SexM = 1 if male, 0 otherwise

Interpret the estimates

  • Quantitative Variable:
    • Parameter: \(\beta_4\) For each millimeter increase in bill depth, the body weight of a penguin to increases by \(\beta_4\) grams, given species and sex are held constant.
      • Estimate \(\hat{\beta_4}\) =102.04 For each millimeter increase in bill depth, we expect the body weight of a penguin to increase by 102.04 grams, given species and sex are held constant.
  • Qualitative Variable:
    • Parameter:\(\beta_3\) The true mean body mass for male penguins is β_3 grams higher than female penguins, given species and bill depth are held constant.
    • Estimate: \(\hat{\beta_3}\) =513.99 The estimated mean body mass for male penguins is 513.99 grams higher than female penguins, given species and bill depth are held constant.
  • Interpret species coefficients: \(\beta_1\) and \(\beta_2\)

Visualizing Quantitative and Qualitative Variables

Create a scatter plot of the quantitative variable vs the response. Then label the observations by the qualitative variable.

#Bill Depth / Species plot with no regression lines
plot(x=pendata$bill_depth_mm, y=pendata$body_mass_g,pch=as.numeric(factor(pendata$species)),xlab="Bill Depth",ylab="Body Mass (grams)") 
legend("topright",legend = levels(factor(pendata$species)),
       pch = 1:nlevels(factor(pendata$species)))

NOTE: When we group the observations on the scatter plot for Bill Depth by species, the relationships for each level are positive, despite the overall negative trend. Also we see each species would have a similar slope, but different y-intercepts.

Let’s suppose we simplify the model to just species and bill depth:

\(E(body mass)=\beta_0+\beta_1SpeciesC+ \beta_2SpeciesG+\beta_3 BillDepth\) , where SpeciesC= 1 if Chinstrap, 0 otherwise and SpeciesG = 1 if Gentoo, 0 otherwise

  • The body mass- bill depth y intercept for Adelie (SpeciesC=0,SpeciesG=0) will be: \(\beta_0\)
  • The body mass- bill depth y intercept for Chinstrap (SpeciesC=1,SpeciesG=0) will be: \(\beta_0+\beta_1\)
  • The body mass- bill depth y intercept for Gentoo (SpeciesC=0,SpeciesG=1) will be: \(\beta_0+\beta_2\)
  • All species will have the same body mass- bill depth slope of \(\beta_3\)

What if there were different slopes for each group? We will explore this next time!

Unit 2.2 Interactions

We will explore the various styles of interactions through several combinations of variables.

Qualitative X Quantitative

EDA: Grouped Scatter Plot (Species X Bill Depth)

If an interaction is present, we would note non-parallel (different) slopes for each level of the qualitative variable.

# Bill Depth / Species Interaction Scatter Plot with regression lines
plot(x=pendata$bill_depth_mm, y=pendata$body_mass_g,pch=as.numeric(factor(pendata$species)),xlab="Bill Depth",ylab="Body Mass (grams)") 
legend("topright",legend = levels(factor(pendata$species)),
       pch = 1:nlevels(factor(pendata$species)))
for (g in levels(as.factor(pendata$species))) {
  group_subset <- subset(pendata, species == g)
  model <- lm(body_mass_g ~ bill_depth_mm, data = group_subset)
  abline(model,lwd = 1)
}

There does not appear to be strong evidence of an interaction because the bill depth-body mass slopes for each species appear to be the same.

How would these “different slopes” show up in the model?

Write a model for E(y) as a function of bill depth and species that hypothesizes different bill depth-body mass slopes for each species.

\(E(body mass)=\beta_0+\beta_1SpeciesC+ \beta_2SpeciesG+\beta_3 BillDepth\)

\(+\beta_4SpeciesC*BillDepth+ \beta_5SpeciesG*BillDepth\)

, where SpeciesC= 1 if Chinstrap, 0 otherwise and SpeciesG = 1 if Gentoo, 0 otherwise

  • The coefficient (slope) for BillDepth is \(\beta_3+\beta_4SpeciesC+ \beta_5SpeciesG\)
    • The bill depth-body mass slope for Adelie (SpeciesC=0,SpeciesG=0) will be: \(\beta_3\)

    • The bill depth-body mass slope for Chinstrap (SpeciesC=1,SpeciesG=0) will be: \(\beta_3+\beta_4\)

    • The bill depth-body mass slope for Gentoo (SpeciesC=0,SpeciesG=1) will be: \(\beta_3+\beta_5\)

    • In the last section we saw that by just including the dummy variables, we account for different y-intercepts for each species. By adding an interaction, we allow for different slopes.

Fit the model with the interaction Species X Bill Depth

penmod3<-lm(body_mass_g~species+bill_depth_mm+species*bill_depth_mm,data=pendata)
summary(penmod3)

Call:
lm(formula = body_mass_g ~ species + bill_depth_mm + species * 
    bill_depth_mm, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-845.89 -254.74  -28.46  228.01 1161.41 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     -283.28     437.94  -0.647   0.5182    
speciesChinstrap                 247.06     829.77   0.298   0.7661    
speciesGentoo                   -175.71     658.43  -0.267   0.7897    
bill_depth_mm                    217.15      23.82   9.117   <2e-16 ***
speciesChinstrap:bill_depth_mm   -12.53      45.01  -0.278   0.7809    
speciesGentoo:bill_depth_mm      152.29      40.49   3.761   0.0002 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 354.9 on 336 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared:  0.807, Adjusted R-squared:  0.8041 
F-statistic:   281 on 5 and 336 DF,  p-value: < 2.2e-16
#Note we can also simplify the syntax
penmod3a<-lm(body_mass_g~species*bill_depth_mm,data=pendata)
summary(penmod3a)

Call:
lm(formula = body_mass_g ~ species * bill_depth_mm, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-845.89 -254.74  -28.46  228.01 1161.41 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     -283.28     437.94  -0.647   0.5182    
speciesChinstrap                 247.06     829.77   0.298   0.7661    
speciesGentoo                   -175.71     658.43  -0.267   0.7897    
bill_depth_mm                    217.15      23.82   9.117   <2e-16 ***
speciesChinstrap:bill_depth_mm   -12.53      45.01  -0.278   0.7809    
speciesGentoo:bill_depth_mm      152.29      40.49   3.761   0.0002 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 354.9 on 336 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared:  0.807, Adjusted R-squared:  0.8041 
F-statistic:   281 on 5 and 336 DF,  p-value: < 2.2e-16

Write the prediction equation

\(\widehat{body mass}=-283.28+247.06SpeciesC-175.71SpeciesG+217.15 BillDepth\)

\(-12.53SpeciesC*BillDepth+ 152.29SpeciesG*BillDepth\)

Interpret the slope estimate for bill depth

  • The slope is estimated as \(217.15 -12.53SpeciesC+ 152.29SpeciesG\)
    • For a one millimeter increase in bill depth, the expected body mass will increase by 217.15 grams for the Adelie penguins.
    • For a one millimeter increase in bill depth, the expected body mass will increase by 204.62 (= 217.15-12.53) grams for the Chinstrap penguins.
    • For a one millimeter increase in bill depth, the expected body mass will increase by 369.44 (= 217.15+152.29) grams for the Gentoo penguins.

Qualitative X Qualitative

EDA: Interaction Plot (Sex X Species)

If an interaction is present, we would notice extreme crossing of levels. The relationship of one variable with the response DEPENDS on the other variable.

# We need to verify there are non-zero observations for every combination of level
table(pendata$species,pendata$sex)
           
            female male
  Adelie        73   73
  Chinstrap     34   34
  Gentoo        58   61
# We can plot interactions either way
interaction.plot(pendata$species, pendata$sex, pendata$body_mass_g,fun=mean,trace.label="Sex", xlab="Species",ylab="Mean Body Mass")

interaction.plot(pendata$sex, pendata$species, pendata$body_mass_g,fun=mean,trace.label="Species", xlab="Sex",ylab="Mean Body Mass")

There is not strong evidence of an interaction because there is not drastic switching of the levels.

Write a model for E(y) as a function of sex and species and its interaction.

\(E(body mass)=\beta_0+\beta_1SpeciesC+ \beta_2SpeciesG+\beta_3 SexM\)

\(+\beta_4SpeciesC*SexM+ \beta_5SpeciesG*SexM\)

  • Coefficient for SpeciesC = \(\beta_1 +\beta_4*SexM\)

  • Coefficient for SpeciesG = \(\beta_2 +\beta_5*SexM\)

  • Coefficient for SexM = \(\beta_3 +\beta_4*SpeciesC+\beta_5*SpeciesG\)

  • There are many ways to interpret these betas. For instance, the average value of males’ body mass depends on the species. Or the average body mass of a particular species depends on the sex of the penguin. Remember qualitative variables do not have “slope” coefficients. Instead we interpret as the (difference in the) average value of y, given a combination of categorical levels.

Fit the model with the interaction Species X Sex

penmod4<-lm(body_mass_g~species+sex+species*sex,data=pendata)
summary(penmod4)

Call:
lm(formula = body_mass_g ~ species + sex + species * sex, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-827.21 -213.97   11.03  206.51  861.03 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               3368.84      36.21  93.030  < 2e-16 ***
speciesChinstrap           158.37      64.24   2.465  0.01420 *  
speciesGentoo             1310.91      54.42  24.088  < 2e-16 ***
sexmale                    674.66      51.21  13.174  < 2e-16 ***
speciesChinstrap:sexmale  -262.89      90.85  -2.894  0.00406 ** 
speciesGentoo:sexmale      130.44      76.44   1.706  0.08886 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 309.4 on 327 degrees of freedom
  (11 observations deleted due to missingness)
Multiple R-squared:  0.8546,    Adjusted R-squared:  0.8524 
F-statistic: 384.3 on 5 and 327 DF,  p-value: < 2.2e-16
#Note we can use simplified syntax
penmod4a<-lm(body_mass_g~species*sex,data=pendata)
summary(penmod4a)

Call:
lm(formula = body_mass_g ~ species * sex, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-827.21 -213.97   11.03  206.51  861.03 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               3368.84      36.21  93.030  < 2e-16 ***
speciesChinstrap           158.37      64.24   2.465  0.01420 *  
speciesGentoo             1310.91      54.42  24.088  < 2e-16 ***
sexmale                    674.66      51.21  13.174  < 2e-16 ***
speciesChinstrap:sexmale  -262.89      90.85  -2.894  0.00406 ** 
speciesGentoo:sexmale      130.44      76.44   1.706  0.08886 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 309.4 on 327 degrees of freedom
  (11 observations deleted due to missingness)
Multiple R-squared:  0.8546,    Adjusted R-squared:  0.8524 
F-statistic: 384.3 on 5 and 327 DF,  p-value: < 2.2e-16

Write the prediction equation

\(\widehat{body mass}=3368.84+158.37SpeciesC+1310.91SpeciesG+674.66 SexM\)

\(-262.89SpeciesC*SexM+ 130.44SpeciesG*SexM\)

Plug in the appropriate 1s and 0s for the dummy variables to interpret the coefficients.

  • The estimated average body mass for Adelie female penguins is 3368.84 grams.

Estimate of coefficient for SpeciesC = \(158.37 -262.89*SexM\)

  • The estimated mean body mass for Chinstrap penguins is (158.31-262.89)=104.58 grams lower than Adelie penguins, for male penguins.

  • The estimated mean body mass for Chinstrap penguins is 158.31 higher than Adelie penguins, for female penguins.

Estimate of coefficient for SpeciesG = \(1310.91 +130.44*SexM\)

  • The estimated mean body mass for Gentoo penguins is (1310.91+130.44)=1441.35 grams higher than Adelie penguins, for male penguins.

  • The estimated mean body mass for Gentoo penguins is 1310.91 grams higher than Adelie penguins, for female penguins.

Estimate of coefficient for SexM = \(674.66 -262.89*SpeciesC+130.44*SpeciesG\)

  • The estimated mean body mass for male penguins is (674.66-262.89)=411.77 grams higher than female penguins, for Chinstrap penguins.

  • The estimated mean body mass for male penguins is (674.66+130.44)=805.1 grams higher than female penguins, for Gentoo penguins.

  • The estimated mean body mass for male penguins is 674.66 grams higher than female penguins, for Adelie penguins.

Quantitative X Quantitative

EDA: There is none (Bill Length X Bill Depth)

There is no visualization for two quantitative variables having an interaction. We base our justificaiton off of intuition or research.

Write a model for E(y) as a function of bill depth and bill length that allows for an interaction.

\(E(body mass)=\beta_0+\beta_1BillLength+\beta_2 BillDepth\)

\(+\beta_3BillLength*BillDepth\)

  • The coefficient (slope) for BillLength is \(\beta_1+\beta_3BillDepth\)
  • The coefficient (slope) for BillDepth is \(\beta_2+\beta_3BillLength\)

Fit the model with the interaction Bill Length X Bill Depth

penmod5<-lm(body_mass_g~bill_length_mm+bill_depth_mm+bill_length_mm*bill_depth_mm,data=pendata)
summary(penmod5)

Call:
lm(formula = body_mass_g ~ bill_length_mm + bill_depth_mm + bill_length_mm * 
    bill_depth_mm, data = pendata)

Residuals:
     Min       1Q   Median       3Q      Max 
-1811.29  -355.81     4.35   354.80  1606.90 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                  -25583.278   2668.939  -9.586   <2e-16 ***
bill_length_mm                  715.006     58.681  12.185   <2e-16 ***
bill_depth_mm                  1484.934    149.405   9.939   <2e-16 ***
bill_length_mm:bill_depth_mm    -36.079      3.297 -10.944   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 503.5 on 338 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared:  0.6093,    Adjusted R-squared:  0.6058 
F-statistic: 175.7 on 3 and 338 DF,  p-value: < 2.2e-16
#We can used shortened syntax
penmod5a<-lm(body_mass_g~bill_length_mm*bill_depth_mm,data=pendata)
summary(penmod5a)

Call:
lm(formula = body_mass_g ~ bill_length_mm * bill_depth_mm, data = pendata)

Residuals:
     Min       1Q   Median       3Q      Max 
-1811.29  -355.81     4.35   354.80  1606.90 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                  -25583.278   2668.939  -9.586   <2e-16 ***
bill_length_mm                  715.006     58.681  12.185   <2e-16 ***
bill_depth_mm                  1484.934    149.405   9.939   <2e-16 ***
bill_length_mm:bill_depth_mm    -36.079      3.297 -10.944   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 503.5 on 338 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared:  0.6093,    Adjusted R-squared:  0.6058 
F-statistic: 175.7 on 3 and 338 DF,  p-value: < 2.2e-16

The prediction equation is:

\(\widehat{body mass}=-25583.278+715.006BillLength+1484.934 BillDepth-36.079 BillLength*BillDepth\)

Suppose a penguin has a bill depth of 17mm. What is the slope of bill length?

  • The slope estimate for BillLength is \(715.006-36.079*BillDepth\). When bill depth is 17mm, our slope is \(715.006-36.079*17= 101.663\). Therefore, for a one millimeter increase in bill length, the expected body mass will increase by 101.66 grams when bill depth is held constant at 17mm.

Suppose a penguin has a bill length of 40mm. What is the slope of bill depth?

  • The slope estimate for BillDepth is \(1484.934-36.079*BillLength\). When bill depth is 40mm, our slope is \(1484.934-36.079*40= 41.774\). Therefore, for a one millimeter increase in bill depth, the expected body mass will increase by 41.774 grams when bill length is held constant at 40mm.