1 Introduction

This document summarizes the mathematical formulations of 11 hazard-based and odds-based regression models as presented in the thesis “Bayesian and Frequentist Approaches for Flexible Parametric Hazard-Based Regression Models with Generalized Log-logistic Baseline Distribution”.

For each model, the following probabilistic functions are defined:

  1. Hazard Rate Function: \(h(t; x)\)
  2. Cumulative Hazard Function: \(H(t; x)\)
  3. Survival Function: \(S(t; x)\)
  4. Odds Function: \(R(t; x) = \frac{1-S(t; x)}{S(t; x)}\)
  5. Derivative of the Odds Function: \(r(t; x) = \frac{d}{dt}R(t; x)\)

Notation:

  • \(h_0(t), H_0(t), S_0(t), R_0(t), r_0(t)\) represent the baseline functions.
  • \(x\) represents the vector of covariates.
  • \(\beta\) represents the vector of regression coefficients.

2 1. Proportional Hazard (PH) Model

The PH model assumes that covariates act multiplicatively on the hazard rate function.

  • Hazard Rate Function: \[h_{PH}(t; x) = h_0(t) e^{x'\beta}\]

  • Cumulative Hazard Function: \[H_{PH}(t; x) = H_0(t) e^{x'\beta}\]

  • Survival Function: \[S_{PH}(t; x) = [S_0(t)]^{e^{x'\beta}}\]

  • Odds Function: \[R_{PH}(t; x) = [S_0(t)]^{-e^{x'\beta}} - 1\] (Alternatively expressed via cumulative hazard: \(\exp(H_0(t)e^{x'\beta}) - 1\))

  • Derivative of Odds Function: \[r_{PH}(t; x) = h_{PH}(t; x) [S_{PH}(t; x)]^{-1} = h_0(t)e^{x'\beta} [S_0(t)]^{-e^{x'\beta}}\]


3 2. Accelerated Hazard (AH) Model

The AH model assumes that covariates scale the time axis of the hazard rate function (time-scale change in hazard progression).

  • Hazard Rate Function: \[h_{AH}(t; x) = h_0(t e^{x'\beta})\]

  • Cumulative Hazard Function: \[H_{AH}(t; x) = H_0(t e^{x'\beta}) e^{-x'\beta}\]

  • Survival Function: \[S_{AH}(t; x) = \exp \left( -H_0(t e^{x'\beta}) e^{-x'\beta} \right) = [S_0(t e^{x'\beta})]^{e^{-x'\beta}}\]

  • Odds Function: \[R_{AH}(t; x) = [S_0(t e^{x'\beta})]^{-e^{-x'\beta}} - 1\]

  • Derivative of Odds Function: \[r_{AH}(t; x) = \frac{h_{AH}(t; x)}{S_{AH}(t; x)} = h_0(t e^{x'\beta}) [S_0(t e^{x'\beta})]^{-e^{-x'\beta}}\]


4 3. Accelerated Failure Time (AFT) Model

The AFT model assumes that covariates act multiplicatively on the time scale, affecting the rate at which an individual proceeds along the time axis.

  • Hazard Rate Function: \[h_{AFT}(t; x) = h_0(t e^{x'\beta}) e^{x'\beta}\]

  • Cumulative Hazard Function: \[H_{AFT}(t; x) = H_0(t e^{x'\beta})\]

  • Survival Function: \[S_{AFT}(t; x) = S_0(t e^{x'\beta})\]

  • Odds Function: \[R_{AFT}(t; x) = R_0(t e^{x'\beta})\]

  • Derivative of Odds Function: \[r_{AFT}(t; x) = r_0(t e^{x'\beta}) e^{x'\beta}\]


5 4. General Hazard (GH) Model

The GH model nests the PH, AH, and AFT models. It separates the covariate effects into a time-scale change (\(\beta_1\)) and a relative hazard ratio (\(\beta_2\)).

  • Hazard Rate Function: \[h_{GH}(t; x) = h_0(t e^{x'\beta_1}) e^{x'\beta_2}\]

  • Cumulative Hazard Function: \[H_{GH}(t; x) = H_0(t e^{x'\beta_1}) e^{x'(\beta_2 - \beta_1)}\]

  • Survival Function: \[S_{GH}(t; x) = [S_0(t e^{x'\beta_1})]^{e^{x'(\beta_2 - \beta_1)}}\]

  • Odds Function: \[R_{GH}(t; x) = [S_0(t e^{x'\beta_1})]^{-e^{x'(\beta_2 - \beta_1)}} - 1\]

  • Derivative of Odds Function: \[r_{GH}(t; x) = h_0(t e^{x'\beta_1}) e^{x'\beta_2} [S_0(t e^{x'\beta_1})]^{-e^{x'(\beta_2 - \beta_1)}}\]


6 5. Proportional Odds (PO) Model

The PO model assumes that the odds of the event occurring are proportional across different covariate levels.

  • Odds Function: \[R_{PO}(t; x) = R_0(t) e^{x'\beta}\]

  • Derivative of Odds Function: \[r_{PO}(t; x) = r_0(t) e^{x'\beta}\]

  • Survival Function: \[S_{PO}(t; x) = \frac{1}{1 + R_0(t) e^{x'\beta}}\]

  • Hazard Rate Function: \[h_{PO}(t; x) = \frac{r_0(t) e^{x'\beta}}{1 + R_0(t) e^{x'\beta}}\]

  • Cumulative Hazard Function: \[H_{PO}(t; x) = \ln(1 + R_0(t) e^{x'\beta})\]


7 6. Accelerated Odds (AO) Model

A novel model introduced in the thesis where covariates accelerate the odds function.

  • Odds Function: \[R_{AO}(t; x) = R_0(t e^{x'\beta}) e^{-x'\beta}\]

  • Derivative of Odds Function: \[r_{AO}(t; x) = r_0(t e^{x'\beta})\]

  • Survival Function: \[S_{AO}(t; x) = \left[ 1 + R_0(t e^{x'\beta}) e^{-x'\beta} \right]^{-1}\]

  • Hazard Rate Function: \[h_{AO}(t; x) = \frac{r_0(t e^{x'\beta})}{1 + R_0(t e^{x'\beta}) e^{-x'\beta}}\]

  • Cumulative Hazard Function: \[H_{AO}(t; x) = \ln \left( 1 + R_0(t e^{x'\beta}) e^{-x'\beta} \right)\]


8 7. General Odds (GO) Model

The GO model nests the PO, AFT, and AO models.

  • Odds Function: \[R_{GO}(t; x) = R_0(t e^{x'\beta_1}) e^{x'(\beta_2 - \beta_1)}\]

  • Derivative of Odds Function: \[r_{GO}(t; x) = r_0(t e^{x'\beta_1}) e^{x'\beta_2}\]

  • Survival Function: \[S_{GO}(t; x) = \left[ 1 + R_0(t e^{x'\beta_1}) e^{x'(\beta_2 - \beta_1)} \right]^{-1}\]

  • Hazard Rate Function: \[h_{GO}(t; x) = \frac{r_0(t e^{x'\beta_1}) e^{x'\beta_2}}{1 + R_0(t e^{x'\beta_1}) e^{x'(\beta_2 - \beta_1)}}\]

  • Cumulative Hazard Function: \[H_{GO}(t; x) = \ln \left( 1 + R_0(t e^{x'\beta_1}) e^{x'(\beta_2 - \beta_1)} \right)\]


9 8. Yang and Prentice (YP) Model

A semi-parametric model allowing for crossing survival curves, including PO and PH as special cases.

  • Odds Function: \[R_{YP}(t; \beta_1, \beta_2, x) = e^{x'(\beta_1 - \beta_2)} R_0(t)^{e^{x'\beta_2}}\]

  • Derivative of Odds Function: \[r_{YP}(t; \beta_1, \beta_2, x) = r_0(t) e^{x'\beta_1} R_0(t)^{e^{x'\beta_2} - 1}\]

  • Hazard Rate Function: \[h_{YP}(t; \beta_1, \beta_2, x) = \frac{e^{x'(\beta_1+\beta_2)} h_0(t)}{F_0(t)e^{x'\beta_1} + S_0(t)e^{x'\beta_2}}\]

  • Survival Function: \[S_{YP}(t; \beta_1, \beta_2, x) = \left[ 1 + \left( \frac{F_0(t)}{S_0(t)} \right)^{e^{x'\beta_2}} e^{x'(\beta_1 - \beta_2)} \right]^{-1}\]

  • Cumulative Hazard Function: \[H_{YP}(t; \beta_1, \beta_2, x) = \ln \left( 1 + R_{YP}(t; \beta_1, \beta_2, x) \right)\]


10 9. Generalized Odds-Rate Hazards (GOH/GORH) Model

A model containing PH, AFT, and PO as special cases.

  • Survival Function: \[S_{GOH}(t; \theta, \beta, x) = \{ 1 + \theta \exp(\varphi_0(t) + x'\beta) \}^{-1/\theta}\] (Where \(\theta > 0\) is the GORH parameter)

  • Hazard Rate Function: \[h_{GOH}(t; \theta, \beta, x) = \frac{\varphi'_0(t) \exp(\varphi_0(t) + x'\beta)}{1 + \theta \exp(\varphi_0(t) + x'\beta)}\]

  • Cumulative Hazard Function: \[H_{GOH}(t; \theta, \beta, x) = \frac{1}{\theta} \ln \{ 1 + \theta \exp(\varphi_0(t) + x'\beta) \}\]

  • Odds Function: \[R_{GOH}(t; \theta, \beta, x) = \{ 1 + \theta \exp(\varphi_0(t) + x'\beta) \}^{1/\theta} - 1\]

  • Derivative of Odds Function: \[r_{GOH}(t; \theta, \beta, x) = h_{GOH}(t) \cdot (R_{GOH}(t) + 1)\]


11 10. Super Model (SM)

A semi-parametric model containing PH, PO, AFT, AH, YP, and GH models.

  • Hazard Rate Function: \[h_{SM}(t; \beta_1, \beta_2, \beta_3, x) = \frac{e^{x'(\beta_2+\beta_3+\beta_1)} h_0(te^{\beta_1 x'})}{e^{x'(\beta_2+\beta_1)} F_0(te^{\beta_1 x'}) + e^{\beta_3 x'} S_0(te^{\beta_1 x'})}\]

  • Odds Function: \[R_{SM}(t; \beta_1, \beta_2, \beta_3, x) = e^{x'(\beta_2 - \beta_3 + \beta_1)} R_0(te^{\beta_1 x'})^{e^{(\beta_3 - \beta_1)'x}}\]

  • Survival Function: \[S_{SM}(t; \beta_1, \beta_2, \beta_3, x) = \left[ 1 + e^{x'(\beta_2 - \beta_3 + \beta_1)} \left( \frac{F_0(te^{\beta_1 x'})}{S_0(te^{\beta_1 x'})} \right)^{e^{(\beta_3 - \beta_1)'x}} \right]^{-1}\]

  • Cumulative Hazard Function: \[H_{SM}(t) = \ln(1 + R_{SM}(t))\]

  • Derivative of Odds Function: \[r_{SM}(t) = \frac{d}{dt} R_{SM}(t)\]


12 11. Amoud Class (AM) Model

A universal class proposed in the thesis that encompasses all hazard-based and odds-based regression models (PH, PO, AH, AO, AFT, GH, GO).

  • Odds Function: \[R_{AM}(t; \beta_1, \beta_2, \beta_3, x) = e^{x'(\beta_2 - \beta_1)} R_0(te^{x'\beta_1})^{e^{x'(\beta_3 - \beta_1)}}\]

  • Survival Function: \[S_{AM}(t; \beta_1, \beta_2, \beta_3, x) = \left[ 1 + e^{x'(\beta_2 - \beta_1)} R_0(te^{x'\beta_1})^{e^{x'(\beta_3 - \beta_1)}} \right]^{-1}\]

  • Hazard Rate Function: \[h_{AM}(t; \beta_1, \beta_2, \beta_3, x) = \frac{e^{x'(\beta_2 + \beta_3 - \beta_1)} h_0(te^{x'\beta_1})}{e^{x'(\beta_2 - \beta_1)} F_0(te^{x'\beta_1}) + S_0(te^{x'\beta_1})}\]

  • Derivative of Odds Function: \[r_{AM}(t; \beta_1, \beta_2, \beta_3, x) = r_0(te^{x'\beta_1}) e^{x'(\beta_2 + \beta_1)} R_0(te^{x'\beta_1})^{e^{x'(\beta_3 - \beta_1)} - 1}\]

  • Cumulative Hazard Function: \[H_{AM}(t; \beta_1, \beta_2, \beta_3, x) = \ln \left( 1 + e^{x'(\beta_2 - \beta_1)} R_0(te^{x'\beta_1})^{e^{x'(\beta_3 - \beta_1)}} \right)\]

```