# Imports
library(dplyr) # Data manipulation
library(FactoMineR) # PCA analysis
library(factoextra) # PCA visualization
library(tidyverse) # Data wrangling
# Set language to English and data repository path
Sys.setenv(LANGUAGE='en')
metadata_dir <- "/Users/teo/Datasets/fma/data"

Data Subset Description (FMA)

This project uses a subset of the Free Music Archive (FMA) dataset, focusing on the 223 temporal features provided by Echonest (now Spotify). The complete dataset contains:

More information of this dataset can be found on the following links: - Github repositoy: https://github.com/mdeff/fma?tab=readme-ov-file - Website: https://freemusicarchive.org/ - Codebook paper: https://arxiv.org/abs/1612.01840

We will focus on the 223 temporal features provided by Echonest to explore dimensionality reduction.

Data Preparation

Data Loading and Subset Selection

echonest_raw <- read.csv(file.path(metadata_dir, "echonest.csv"), sep = ",")

# Find column indices
track_id_col <- which(echonest_raw[3, ] == "track_id")
audio_cols <- which(echonest_raw[1, ] == "temporal_features")

# Set track_id column name
echonest_raw[2, 1] <- "track_id"

# Select temporal features
echonest_clean <- echonest_raw %>%
  select(track_id_col, audio_cols)

echonest_clean <- echonest_clean %>% 
  setNames(c("track_id", paste0("tf_", seq_len(length(audio_cols)) - 1 ))) %>%
  slice(-c(1, 2, 3))

head(echonest_clean)
##   track_id         tf_0         tf_1         tf_2         tf_3         tf_4
## 1        2 0.8772332668 0.5889111161 0.3542430103 0.2950901389 0.2984125018
## 2        3 0.5344291329 0.5374142528 0.4432994723 0.3908788860 0.3445729315
## 3        5 0.5480925441 0.7201917768 0.3892570734 0.3449338675 0.3612995744
## 4       10 0.3114041686 0.7114023566 0.3219138086 0.5006007552 0.2509630620
## 5      134 0.6108492613 0.5691694617 0.4284938276 0.3457958102 0.3769202232
## 6      139 0.8002824187 0.5863723159 0.3541595340 0.2662401199 0.2501960099
##           tf_5         tf_6         tf_7         tf_8         tf_9        tf_10
## 1 0.3094303906 0.3044959009 0.3345789909 0.2494945079 0.2596555948 0.3183763623
## 2 0.3664476275 0.4194553494 0.7477657795 0.4609008729 0.3923788667 0.4745588005
## 3 0.4025429785 0.4340436757 0.3881373107 0.5124866962 0.5257551670 0.4253708720
## 4 0.3213164508 0.7342495322 0.3251882195 0.3730122745 0.2358400822 0.3687555194
## 5 0.4605903029 0.4013709426 0.4499002397 0.4289464653 0.4467355907 0.4798492193
## 6 0.2111320049 0.2878349721 0.3560358286 0.1853207797 0.1874729693 0.2787652910
##          tf_11        tf_12        tf_13        tf_14        tf_15        tf_16
## 1 0.3719735742 1.0000000000 0.5709999800 0.2779999971 0.2099999934 0.2150000036
## 2 0.4067287743 0.5059999824 0.5145000219 0.3869999945 0.3235000074 0.2804999948
## 3 0.4468963742 0.5109999776 0.7720000148 0.3610000014 0.2879999876 0.3310000002
## 4 0.4407747984 0.2630000114 0.7360000014 0.2730000019 0.4259999990 0.2140000015
## 5 0.3782213628 0.6140000224 0.5450000167 0.3630000055 0.2800000012 0.3109999895
## 6 0.2455324382 1.0000000000 0.5669999719 0.2849999964 0.1840000004 0.1800000072
##          tf_17        tf_18        tf_19        tf_20        tf_21        tf_22
## 1 0.2285000086 0.2375000119 0.2790000141 0.1685000062 0.1685000062 0.2790000141
## 2 0.3134999871 0.3454999924 0.8980000019 0.4365000129 0.3384999931 0.3980000019
## 3 0.3720000088 0.3589999974 0.2790000141 0.4429999888 0.4839999974 0.3680000007
## 4 0.2879999876 0.8100000024 0.2460000068 0.2949999869 0.1640000045 0.3109999895
## 5 0.3970000148 0.3170000017 0.4040000141 0.3560000062 0.3799999952 0.4199999869
## 6 0.1539999992 0.2240000069 0.2730000019 0.1260000020 0.1209999993 0.1940000057
##          tf_23        tf_24        tf_25        tf_26        tf_27        tf_28
## 1 0.3324999809 0.0498478077 0.1042116806 0.0602296367 0.0522896349 0.0474028923
## 2 0.3479999900 0.0792073756 0.0833189711 0.0735951439 0.0710243136 0.0566785559
## 3 0.3970000148 0.0810512751 0.0783000439 0.0486967675 0.0569216162 0.0452642851
## 4 0.3860000074 0.0339685380 0.0706918016 0.0391614996 0.0957805142 0.0241024029
## 5 0.2919999957 0.0851764232 0.0922424719 0.0731827617 0.0563536324 0.0620124415
## 6 0.1979999989 0.0882479027 0.0819181278 0.0764843374 0.0600638725 0.0520195663
##          tf_29        tf_30        tf_31        tf_32        tf_33        tf_34
## 1 0.0528145321 0.0527327284 0.0622162186 0.0516130924 0.0573992468 0.0531989150
## 2 0.0661131516 0.0738886818 0.0881001726 0.0713052154 0.0592749827 0.0882215947
## 3 0.0668194890 0.0944890827 0.0892501846 0.0980891734 0.0841334611 0.0688664615
## 4 0.0284968242 0.0738470331 0.0451029576 0.0654683039 0.0416341983 0.0416188724
## 5 0.0883433670 0.0770837665 0.0979418233 0.1017896533 0.0945333317 0.0893670395
## 6 0.0348037370 0.0585542247 0.0702416673 0.0301108528 0.0414460115 0.0712253675
##          tf_35        tf_36        tf_37        tf_38        tf_39        tf_40
## 1 0.0625829771 0.0359999985 0.0179999992 0.0170000009 0.0209999997 0.0209999997
## 2 0.0672978386 0.0399999991 0.0399999991 0.0289999992 0.0209999997 0.0089999996
## 3 0.0862237439 0.0230000000 0.0230000000 0.0240000002 0.0209999997 0.0230000000
## 4 0.0844420493 0.0270000007 0.0810000002 0.0350000001 0.0250000004 0.0329999998
## 5 0.0885441825 0.0030000000 0.0120000001 0.0030000000 0.0040000002 0.0099999998
## 6 0.0353756510 0.0189999994 0.0149999997 0.0089999996 0.0049999999 0.0070000002
##          tf_41        tf_42        tf_43        tf_44        tf_45        tf_46
## 1 0.0099999998 0.0149999997 0.0410000011 0.0099999998 0.0089999996 0.0209999997
## 2 0.0199999996 0.0199999996 0.0529999994 0.0219999999 0.0320000015 0.0340000018
## 3 0.0199999996 0.0289999992 0.0219999999 0.0399999991 0.0260000005 0.0320000015
## 4 0.0080000004 0.0989999995 0.0379999988 0.0219999999 0.0089999996 0.0399999991
## 5 0.0149999997 0.0049999999 0.0060000001 0.0160000008 0.0140000004 0.0130000003
## 6 0.0060000001 0.0160000008 0.0140000004 0.0120000001 0.0049999999 0.0099999998
##          tf_47        tf_48        tf_49        tf_50        tf_51        tf_52
## 1 0.0130000003 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
## 2 0.0280000009 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
## 3 0.0160000008 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
## 4 0.0189999994 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
## 5 0.0070000002 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
## 6 0.0080000004 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
##          tf_53        tf_54        tf_55        tf_56        tf_57        tf_58
## 1 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
## 2 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
## 3 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
## 4 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
## 5 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
## 6 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
##          tf_59        tf_60        tf_61        tf_62        tf_63        tf_64
## 1 1.0000000000 0.9639999866 0.9819999933 0.9829999804 0.9789999723 0.9789999723
## 2 1.0000000000 0.9599999785 0.9599999785 0.9710000157 0.9789999723 0.9909999967
## 3 1.0000000000 0.9769999981 0.9769999981 0.9760000110 0.9789999723 0.9769999981
## 4 1.0000000000 0.9729999900 0.9190000296 0.9649999738 0.9750000238 0.9670000076
## 5 1.0000000000 0.9969999790 0.9879999757 0.9969999790 0.9959999919 0.9900000095
## 6 1.0000000000 0.9810000062 0.9850000143 0.9909999967 0.9950000048 0.9929999709
##          tf_65        tf_66        tf_67        tf_68        tf_69        tf_70
## 1 0.9900000095 0.9850000143 0.9589999914 0.9900000095 0.9909999967 0.9789999723
## 2 0.9800000191 0.9800000191 0.9470000267 0.9779999852 0.9679999948 0.9660000205
## 3 0.9800000191 0.9710000157 0.9779999852 0.9599999785 0.9739999771 0.9679999948
## 4 0.9919999838 0.9010000229 0.9620000124 0.9779999852 0.9909999967 0.9599999785
## 5 0.9850000143 0.9950000048 0.9940000176 0.9840000272 0.9860000014 0.9869999886
## 6 0.9940000176 0.9840000272 0.9860000014 0.9879999757 0.9950000048 0.9900000095
##          tf_71         tf_72         tf_73        tf_74        tf_75
## 1 0.9869999886 -1.8993418217 -0.0326541141 0.8784691095 1.1475379467
## 2 0.9720000029  0.1973776072  0.1827717870 0.6083937883 0.7858220935
## 3 0.9840000272  0.1928221285 -0.6717008352 0.7164307833 1.1776790619
## 4 0.9810000062  1.3737889528 -0.4227911234 1.2108287811 0.4019902349
## 5 0.9929999709 -0.0991881713  0.0337264910 0.6994758844 1.0396023989
## 6 0.9919999838 -1.3167631626 -0.0441693068 0.7841824293 1.1791211367
##          tf_76        tf_77         tf_78         tf_79        tf_80
## 1 0.9508557320 0.9482570291  1.1578869820  1.1479109526 1.6463184357
## 2 0.7734788656 0.6505462527  0.5746049881 -0.7678036094 0.3262661099
## 3 0.6291931272 0.4781212211  0.6332803369  0.8628662825 0.3443535268
## 4 1.8386119604 1.1616538763 -0.5471905470  1.3866467476 1.2165236473
## 5 0.8988523483 0.5050012469  0.6253782511  0.3946059644 0.5546713471
## 6 1.5143893957 1.5524882078  1.3925627470  1.1596008539 2.1820979118
##          tf_81        tf_82        tf_83         tf_84         tf_85
## 1 1.5301933289 1.1975679398 0.7456728220  2.5100378990 -1.5001832247
## 2 0.8084351420 0.5068933368 0.6821394563 -1.1575478315 -1.1701470613
## 3 0.2640900314 0.6734256744 0.4615538120 -1.0793280602 -0.7441930771
## 4 2.3209004402 1.2210924625 0.4748266041  2.1177000999 -1.0807386637
## 5 0.5244938135 0.3589419723 0.8646205068 -1.2557101250 -1.3260446787
## 6 2.4248695374 1.4303035736 1.7442389727  0.3334860802 -1.0609223843
##           tf_86         tf_87         tf_88         tf_89         tf_90
## 1  0.0305399895  0.6942420006  0.1704316139  0.0646948814  0.8747265339
## 2 -0.6831877232 -0.3665735722 -0.2453565598 -0.5476160049 -0.8097112179
## 3  0.1019921303  0.8623402119 -0.2946934700 -0.8192279339 -0.8599569798
## 4  1.3041543961 -1.2012857199  4.9862089157  1.7308115959 -1.1243979931
## 5 -0.5158722401  0.5178930759 -0.0016620159 -0.9676997662 -0.7474625111
## 6 -0.4416387081  0.6469669342  1.9892992973  2.5554571152  1.4984049797
##           tf_91         tf_92         tf_93         tf_94         tf_95
## 1  0.7225761414  2.2513198853  1.7081594467  1.0548572540  0.0206749439
## 2 -0.8944947720 -0.8087382317 -0.1303174496 -1.0564852953 -0.5107631683
## 3 -0.5404701233 -1.2879196405 -1.1827079058 -0.5665104389 -0.9312319756
## 4  1.4285011292  0.4900166988  5.1374111176  1.1253514290 -0.9764378071
## 5 -1.2020276785 -1.0383806229 -1.0393346548 -1.0762932301 -0.3903930187
## 6  0.4706118107  5.6225099564  6.1532106400  1.2509016991  3.6965451241
##           tf_96         tf_97         tf_98         tf_99         tf_100
## 1 42.9491310120 44.3874359131 32.4093894958 15.6686668396  10.1140279770
## 2 44.0972824097 48.7902412415 10.5843172073 -2.5654540062  -1.2928307056
## 3 40.2746620178  6.5088739395 -7.2656726837 -4.3406348228  10.4072713852
## 4 46.4398994446  6.7388138771 72.5866012573 20.4387168884 -32.3778266907
## 5 40.3582801819 24.1155471802 20.2272605896  6.2521433830 -21.9503059387
## 6 46.0657081604 43.6160774231 37.6549949646 -1.7575439215 -20.9686374664
##           tf_101        tf_102        tf_103        tf_104         tf_105
## 1  -4.0692524910  2.0423531532  2.1883211136 -3.8059234619  -0.4946986735
## 2  -4.4901485443 -0.6337406635  2.1125564575 -7.2880554199  -5.1325993538
## 3  -7.6181354523  5.7291831970  0.2861081958 10.8888654709   0.2416816503
## 4  -3.3921434879 -1.7472296953 -9.3804721832  1.7548427582 -11.1475219727
## 5   5.2669944763 -5.0091261864  0.1084639132 12.6657209396  11.3271398544
## 6 -18.8388214111 -4.8846340179 -3.0386648178  7.5374054909   3.3711853027
##          tf_106        tf_107        tf_108        tf_109         tf_110
## 1  6.0246696472 10.6925992966 44.4425010681 42.3885002136  31.6849994659
## 2 -2.3904085159 11.4479780197 45.4145011902 51.9790000916   6.5979995728
## 3 -3.9121086597  1.7565828562 41.4269981384  7.8359999657 -10.4799995422
## 4  5.8795127869  3.3248572350 47.1870002747  3.5360000134  74.3059997559
## 5 -4.6929130554 -0.3111171722 41.7849998474 19.5919990540   7.0349998474
## 6  0.9086703062 -0.1956740022 46.7050018311 41.9119987488  38.6059989929
##          tf_111         tf_112         tf_113        tf_114        tf_115
## 1  9.9875001907   9.5685005188  -7.1484999657  3.8315000534  1.8505001068
## 2  0.2800000012  -0.0120000001  -8.0494995117 -0.6829999685  1.0310000181
## 3 -5.7420001030  10.4680004120 -10.3800001144  5.9079999924  0.9060000181
## 4 19.5890007019 -36.0530014038  -3.4969999790 -0.4180000126 -9.8420000076
## 5  1.3930000067 -23.0799999237  -2.6930000782 -3.4089999199 -1.2799999714
## 6 -2.3750000000 -19.8099994659 -20.7759990692 -3.7550001144 -1.9609999657
##          tf_116        tf_117        tf_118        tf_119        tf_120
## 1 -2.6875000000 -0.7999999523  5.4615001678 10.2565002441 39.4948196411
## 2 -7.0775003433 -4.3210000992 -0.9275000095  9.0895004272 22.5194072723
## 3 12.0290002823 -1.3190000057 -3.0490000248  0.9869999886 27.5552711487
## 4  0.8980000019 -9.9600000381  6.1199998856  3.9110000134 22.1937274933
## 5 13.7489995956 11.0340003967 -3.8389999866 -1.8220000267 26.8530502319
## 6  6.4279999733  3.1229999065  1.7029999495 -0.8240000010 20.7048206329
##            tf_121          tf_122          tf_123          tf_124
## 1 1966.9791259766 1825.1230468750 1903.7567138672  828.8100585938
## 2 1694.8211669922 1256.4438476562 1251.5882568359  907.5451660156
## 3 1956.2543945312 1382.7572021484 1596.6842041016  983.1115112305
## 4 1392.7327880859  572.2828369141  694.7881469727  880.8521118164
## 5 4123.2895507812 4842.1269531250 2033.4962158203 1603.7653808594
## 6 1268.8386230469  927.0623779297  624.9285888672  586.0334472656
##            tf_125         tf_126          tf_127         tf_128         tf_129
## 1  911.1558227539 581.0153198242  722.0014038086 404.6825561523 315.5284729004
## 2  588.6020507812 619.9716796875  679.5880126953 301.7233581543 401.6705322266
## 3  945.4044189453 659.3389282227  835.0131225586 399.1546936035 483.6076660156
## 4  344.1044616699 395.0022583008  306.6034545898 162.2848205566 283.1201171875
## 5 1318.9726562500 709.5377197266 1050.2038574219 758.4732055664 563.1395874023
## 6  432.5063171387 428.2659301758  282.7200622559 205.2754974365 160.5900115967
##           tf_130         tf_131        tf_132          tf_133          tf_134
## 1 376.6324157715 229.2825469971  0.0000000000 -110.3679962158 -100.6050033569
## 2 294.2216186523 411.2994995117  0.0000000000  -82.7740020752 -137.5910034180
## 3 378.4648742676 244.3444671631  0.0000000000 -138.4380035400 -137.2039947510
## 4 125.4874267578 139.4597778320  0.0000000000 -174.0859985352  -61.2789993286
## 5 366.8037719727 409.6324768066 10.0649995804 -162.1009979248 -137.9539947510
## 6 117.3566207886 171.0218505859  5.4559998512  -70.1080017090 -163.3690032959
##            tf_135          tf_136          tf_137          tf_138
## 1 -112.5810012817  -75.8820037842  -89.1600036621  -80.7379989624
## 2 -131.7290039062 -106.2429962158  -73.4449996948  -83.4680023193
## 3 -126.4509963989  -89.2470016479 -198.0559997559  -78.3420028687
## 4  -95.2720031738  -91.9100036621  -56.0649986267 -101.4879989624
## 5 -137.9830017090 -146.5489959717 -105.6989974976  -84.0770034790
## 6 -210.9510040283 -108.5390014648  -72.8860015869  -84.9950027466
##           tf_139         tf_140          tf_141         tf_142         tf_143
## 1 -91.4980010986 -66.6490020752  -61.8450012207 -66.0810012817 -58.0439987183
## 2 -81.3229980469 -71.0739974976 -108.5650024414 -71.4980010986 -51.3510017395
## 3 -89.7450027466 -50.5960006714  -81.1890029907 -57.6940002441 -57.3120002747
## 4 -70.7959976196 -40.3899993896  -58.2340011597 -95.4639968872 -43.4580001831
## 5 -99.0510025024 -71.3020019531  -76.0540008545 -78.4580001831 -64.7139968872
## 6 -92.5739974976 -45.7109985352  -63.7760009766 -71.3249969482 -38.4490013123
##          tf_144         tf_145         tf_146         tf_147         tf_148
## 1 52.0060005188 216.2369995117 208.4230041504 145.1940002441  97.4820022583
## 2 51.3660011292 190.3339996338 114.8440017700 359.9419860840 101.8619995117
## 3 48.2400016785 211.4900054932  98.5039978027 316.5509948730  92.7630004883
## 4 52.1930007935 171.1300048828 131.0859985352 298.5969848633 159.0930023193
## 5 47.8040008545 243.9210052490 251.8540039062 212.2160034180 107.8359985352
## 6 52.6489982605 178.2590026855 152.9559936523 225.2250061035  57.4860000610
##           tf_149        tf_150         tf_151         tf_152        tf_153
## 1  98.7229995728 68.0910034180 101.5889968872  69.5059967041 58.2270011902
## 2 111.0820007324 78.6480026245 103.0009994507  46.2229995728 53.9939994812
## 3 212.5590057373 69.3669967651 126.8109970093  63.8680000305 73.8420028687
## 4 105.1169967651 73.4339981079  79.7600021362  49.5989990234 63.2309989929
## 5 192.6790008545 82.6539993286 107.7369995117 107.2570037842 89.8040008545
## 6 143.6280059814 71.7269973755  70.3610000610  55.2410011292 57.1860008240
##          tf_154        tf_155        tf_156         tf_157         tf_158
## 1 69.2620010376 58.1759986877 52.0060005188 326.6049804688 309.0280151367
## 2 61.1809997559 90.4290008545 51.3660011292 273.1080017090 252.4349975586
## 3 60.0880012512 70.4020004272 48.2400016785 349.9280090332 235.7079925537
## 4 69.7539978027 35.3880004883 52.1930007935 345.2160034180 192.3649902344
## 5 75.4759979248 71.6380004883 37.7390022278 406.0220031738 389.8079833984
## 6 45.3899993896 55.4519996643 47.1929969788 248.3670043945 316.3250122070
##           tf_159         tf_160         tf_161         tf_162         tf_163
## 1 257.7749938965 173.3640136719 187.8829956055 148.8290100098 193.0870056152
## 2 491.6709899902 208.1049957275 184.5270080566 162.1159973145 184.3240051270
## 3 443.0019836426 182.0100097656 410.6149902344 147.7089996338 216.5559997559
## 4 393.8689880371 251.0030059814 161.1819915771 174.9219970703 150.5559997559
## 5 350.1990051270 254.3849945068 298.3779907227 166.7310028076 206.7879943848
## 6 436.1760253906 166.0249938965 216.5140075684 156.7220001221 162.9349975586
##           tf_164         tf_165         tf_166         tf_167        tf_168
## 1 136.1549987793 120.0720062256 135.3430023193 116.2200012207 -2.9521524906
## 2 117.2969970703 162.5590057373 132.6790008545 141.7799987793 -1.8275640011
## 3 114.4640045166 155.0310058594 117.7819976807 127.7140045166 -2.8933486938
## 4  89.9889984131 121.4649963379 165.2179870605  78.8460006714 -4.5159864426
## 5 178.5590057373 165.8580017090 153.9339904785 136.3519897461 -1.6525785923
## 6 100.9519958496 120.9620056152 116.7149963379  93.9010009766 -2.6680288315
##          tf_169        tf_170       tf_171        tf_172       tf_173
## 1  0.0603787526  0.5259760022 0.3659146428  0.0181823578 0.4544309378
## 2 -0.0835611224  0.1623817682 0.8295344710 -0.1648740768 0.8977400064
## 3  0.0521285050  0.1697771996 0.7968577147 -0.1645101011 0.4647600651
## 4  0.0829991102 -0.4714215696 2.1715390682  1.7477349043 0.4354292750
## 5  0.3018700480  0.6659832001 0.7849597931  0.1076620296 1.0397495031
## 6  0.3682845533 -0.7174737453 0.5567523837 -0.3887572587 2.6096782684
##          tf_174        tf_175        tf_176        tf_177        tf_178
## 1 -0.3300074339  0.1493950188 -0.2148586661  0.0304272678 -0.1538770944
## 2 -0.0588074923  0.3653810322 -0.1313885301 -0.2455788702 -0.3352801502
## 3 -0.2119869590  0.0271193385 -0.2152395695  0.0830522403 -0.0047781193
## 4 -0.6030023694  0.2009870261  0.1271099746 -0.0052971640 -0.9563493133
## 5 -0.1375140697  0.2175779194 -0.0444901139  0.0111590689 -0.2656947970
## 6 -0.2199933082 -0.9367120862  0.4612672925 -0.2523850203 -1.7536903620
##          tf_179        tf_180       tf_181        tf_182        tf_183
## 1 -0.1501315832 13.2062129974 1.0099339485  1.5771942139  0.3370234966
## 2  0.6131197810  8.4240427017 0.2308335304  0.6142115593 11.6273479462
## 3  0.1148146242 12.9981660843 1.2584114075 -0.1051433086  5.2848081589
## 4 -0.2871954441 30.3319053650 2.0512919426  1.1234359741 22.1776161194
## 5  0.3312183619  3.1680064201 0.1415612698 -0.0477104187  1.9169836044
## 6  0.3250348568 11.1633558273 0.6830527782  3.2982597351 17.8313045502
##          tf_184        tf_185        tf_186       tf_187        tf_188
## 1  0.0971493721  0.4012596607  0.0063242912 0.6434857845  0.0120587349
## 2  1.0158128738  1.6277313232  0.0323178768 0.8191256523 -0.0309982300
## 3 -0.2507338524  4.7197546959 -0.1833419800 0.3408124447 -0.2959704399
## 4  7.8893775940  1.8091473579  2.2190947533 1.5184302330  0.6548154354
## 5 -0.1393644810  2.2510304451 -0.2248260975 0.0507028103  0.1880192757
## 6  0.3662776947 13.1276760101  0.1440844536 4.3958177567  0.5084547997
##         tf_189        tf_190       tf_191         tf_192         tf_193
## 1 0.2379474640  0.6559383869 1.2138643265 -12.4861459732 -11.2694997787
## 2 0.7346100807  0.4588825703 0.9999644756 -12.5020437241 -11.4204998016
## 3 0.0991032124  0.0987226963 1.3893718719 -15.4580945969 -14.1049995422
## 4 0.6507272720 12.6564731598 0.4067313671 -10.2448902130  -9.4639997482
## 5 0.2497496605  0.9316980839 0.7660686970 -15.1454715729 -14.1510000229
## 6 3.0266599655  9.7006855011 0.4012825489 -11.2136125565 -10.5539999008
##          tf_194         tf_195        tf_196        tf_197        tf_198
## 1 46.0312614441 -60.0000000000 -3.9330000877 56.0670013428 -2.5874750614
## 2 26.4685516357 -60.0000000000 -5.7890000343 54.2109985352 -1.7558552027
## 3 35.9552230835 -60.0000000000 -7.2480001450 52.7519989014 -2.5055327415
## 4 20.3043079376 -60.0000000000 -5.0269999504 54.9729995728 -5.3652186394
## 5 19.9881458282 -40.2099990845 -7.3509998322 32.8590011597 -1.6325079203
## 6 12.3800067902 -52.5099983215 -3.9479999542 48.5619964600 -2.5336999893
##          tf_199       tf_200       tf_201       tf_202       tf_203
## 1 11.8025846481 0.0479702950 0.0382749997 0.0009882613 0.0000000000
## 2  7.8953514099 0.0577073842 0.0453599989 0.0013973247 0.0000000000
## 3  9.7165975571 0.0586078167 0.0456999987 0.0017765589 0.0000000000
## 4 41.2012786865 0.0489383079 0.0408000015 0.0025914314 0.0000000000
## 5  3.3409819603 0.0594697110 0.0485600010 0.0015864075 0.0107899997
## 6 18.9344310760 0.0513853692 0.0418599993 0.0020967510 0.0053200000
##         tf_204       tf_205        tf_206         tf_207         tf_208
## 1 0.2073000073 0.2073000073  1.6036585569   2.9842758179 -21.8120765686
## 2 0.3395000100 0.3395000100  2.2710206509   9.1860513687 -20.1850318909
## 3 0.2949700058 0.2949700058  1.8278373480   5.2537269592 -24.5231189728
## 4 0.8957399726 0.8957399726 10.5397090912 150.3599853516 -16.4727725983
## 5 0.4200600088 0.4092700183  2.7639477253  13.7183237076 -24.3365745544
## 6 0.5673699975 0.5620499849  4.5734848976  33.3827362061 -16.1887950897
##           tf_209        tf_210         tf_211         tf_212        tf_213
## 1 -20.3120002747 49.1574821472 -60.0000000000  -9.6909999847 50.3089981079
## 2 -19.8680000305 24.0023269653 -60.0000000000  -9.6789999008 50.3209991455
## 3 -24.3670005798 31.8045463562 -60.0000000000 -12.5819997787 47.4179992676
## 4 -15.9029998779 27.5394401550 -60.0000000000  -9.0249996185 50.9749984741
## 5 -22.4489994049 52.7839050293 -60.0000000000 -13.1280002594 46.8720016479
## 6 -15.3030004501 34.6693840027 -60.0000000000  -8.5989999771 51.4010009766
##          tf_214        tf_215       tf_216       tf_217       tf_218
## 1 -1.9923025370  6.8056936264 0.2330697626 0.1928800046 0.0274549890
## 2 -1.5823311806  8.8893079758 0.2584637702 0.2209050059 0.0813684240
## 3 -2.2883579731 11.5271091461 0.2568213642 0.2378199995 0.0601223968
## 4 -3.6629877090 21.5082283020 0.2833518982 0.2670699954 0.1257044971
## 5 -1.4526963234  2.3563981056 0.2346863896 0.1995500028 0.1493317783
## 6 -3.0786671638 12.4115667343 0.2708015740 0.2727000117 0.0252420790
##         tf_219        tf_220        tf_221        tf_222         tf_223
## 1 0.0640799999  3.6769599915  3.6128799915 13.3166904449 262.9297485352
## 2 0.0641300008  6.0827698708  6.0186400414 16.6735477448 325.5810852051
## 3 0.0601399988  5.9264898300  5.8663496971 16.0138492584 356.7557373047
## 4 0.0808200017  8.4140100479  8.3331899643 21.3170642853 483.4038085938
## 5 0.0644000024 11.2670698166 11.2026700974 26.4541797638 751.1477050781
## 6 0.0640399978  2.4366900921  2.3726501465  3.8970954418  37.8660430908

Data Type Conversion

# Convert track_id to integer
echonest_clean <- echonest_clean %>%
  mutate(track_id = as.integer(track_id))

# Convert all temporal features to numeric
# Using across() for efficient conversion
echonest_clean <- echonest_clean %>%
  mutate(across(everything(), as.numeric))

Data Quality Checks

# Check for missing values
colSums(is.na(echonest_clean))
## track_id     tf_0     tf_1     tf_2     tf_3     tf_4     tf_5     tf_6 
##        0        0        0        0        0        0        0        0 
##     tf_7     tf_8     tf_9    tf_10    tf_11    tf_12    tf_13    tf_14 
##        0        0        0        0        0        0        0        0 
##    tf_15    tf_16    tf_17    tf_18    tf_19    tf_20    tf_21    tf_22 
##        0        0        0        0        0        0        0        0 
##    tf_23    tf_24    tf_25    tf_26    tf_27    tf_28    tf_29    tf_30 
##        0        0        0        0        0        0        0        0 
##    tf_31    tf_32    tf_33    tf_34    tf_35    tf_36    tf_37    tf_38 
##        0        0        0        0        0        0        0        0 
##    tf_39    tf_40    tf_41    tf_42    tf_43    tf_44    tf_45    tf_46 
##        0        0        0        0        0        0        0        0 
##    tf_47    tf_48    tf_49    tf_50    tf_51    tf_52    tf_53    tf_54 
##        0        0        0        0        0        0        0        0 
##    tf_55    tf_56    tf_57    tf_58    tf_59    tf_60    tf_61    tf_62 
##        0        0        0        0        0        0        0        0 
##    tf_63    tf_64    tf_65    tf_66    tf_67    tf_68    tf_69    tf_70 
##        0        0        0        0        0        0        0        0 
##    tf_71    tf_72    tf_73    tf_74    tf_75    tf_76    tf_77    tf_78 
##        0        0        0        0        0        0        0        0 
##    tf_79    tf_80    tf_81    tf_82    tf_83    tf_84    tf_85    tf_86 
##        0        0        0        0        0        0        0        0 
##    tf_87    tf_88    tf_89    tf_90    tf_91    tf_92    tf_93    tf_94 
##        0        0        0        0        0        0        0        0 
##    tf_95    tf_96    tf_97    tf_98    tf_99   tf_100   tf_101   tf_102 
##        0        0        0        0        0        0        0        0 
##   tf_103   tf_104   tf_105   tf_106   tf_107   tf_108   tf_109   tf_110 
##        0        0        0        0        0        0        0        0 
##   tf_111   tf_112   tf_113   tf_114   tf_115   tf_116   tf_117   tf_118 
##        0        0        0        0        0        0        0        0 
##   tf_119   tf_120   tf_121   tf_122   tf_123   tf_124   tf_125   tf_126 
##        0        0        0        0        0        0        0        0 
##   tf_127   tf_128   tf_129   tf_130   tf_131   tf_132   tf_133   tf_134 
##        0        0        0        0        0        0        0        0 
##   tf_135   tf_136   tf_137   tf_138   tf_139   tf_140   tf_141   tf_142 
##        0        0        0        0        0        0        0        0 
##   tf_143   tf_144   tf_145   tf_146   tf_147   tf_148   tf_149   tf_150 
##        0        0        0        0        0        0        0        0 
##   tf_151   tf_152   tf_153   tf_154   tf_155   tf_156   tf_157   tf_158 
##        0        0        0        0        0        0        0        0 
##   tf_159   tf_160   tf_161   tf_162   tf_163   tf_164   tf_165   tf_166 
##        0        0        0        0        0        0        0        0 
##   tf_167   tf_168   tf_169   tf_170   tf_171   tf_172   tf_173   tf_174 
##        0        0        0        0        0        0        0        0 
##   tf_175   tf_176   tf_177   tf_178   tf_179   tf_180   tf_181   tf_182 
##        0        0        0        0        0        0        0        0 
##   tf_183   tf_184   tf_185   tf_186   tf_187   tf_188   tf_189   tf_190 
##        0        0        0        0        0        0        0        0 
##   tf_191   tf_192   tf_193   tf_194   tf_195   tf_196   tf_197   tf_198 
##        0        0        0        0        0        0        0        0 
##   tf_199   tf_200   tf_201   tf_202   tf_203   tf_204   tf_205   tf_206 
##        0        0        0        0        0        0        0        0 
##   tf_207   tf_208   tf_209   tf_210   tf_211   tf_212   tf_213   tf_214 
##        0        0        0        0        0        0        0        0 
##   tf_215   tf_216   tf_217   tf_218   tf_219   tf_220   tf_221   tf_222 
##        0        0        0        0        0        0        0        0 
##   tf_223 
##        0
# Check for duplicates
sum(duplicated(echonest_clean$track_id))
## [1] 0
# Summary statistics
summary(echonest_clean)
##     track_id           tf_0              tf_1              tf_2        
##  Min.   :     2   Min.   :0.02264   Min.   :0.02002   Min.   :0.01509  
##  1st Qu.: 12986   1st Qu.:0.33236   1st Qu.:0.31643   1st Qu.:0.27517  
##  Median : 28097   Median :0.44557   Median :0.43222   Median :0.35597  
##  Mean   : 34031   Mean   :0.44836   Mean   :0.43587   Mean   :0.36521  
##  3rd Qu.: 45021   3rd Qu.:0.56014   3rd Qu.:0.55158   3rd Qu.:0.44291  
##  Max.   :124911   Max.   :0.99843   Max.   :0.98537   Max.   :0.99654  
##       tf_3              tf_4              tf_5              tf_6        
##  Min.   :0.01431   Min.   :0.03279   Min.   :0.01409   Min.   :0.01186  
##  1st Qu.:0.22443   1st Qu.:0.26822   1st Qu.:0.23867   1st Qu.:0.24616  
##  Median :0.29773   Median :0.35295   Median :0.31892   Median :0.32545  
##  Mean   :0.30607   Mean   :0.36552   Mean   :0.32573   Mean   :0.33241  
##  3rd Qu.:0.37644   3rd Qu.:0.44858   3rd Qu.:0.40192   3rd Qu.:0.40884  
##  Max.   :0.99018   Max.   :0.96753   Max.   :0.95067   Max.   :0.96777  
##       tf_7              tf_8              tf_9              tf_10        
##  Min.   :0.01182   Min.   :0.01599   Min.   :0.006663   Min.   :0.01298  
##  1st Qu.:0.26621   1st Qu.:0.23539   1st Qu.:0.266039   1st Qu.:0.22077  
##  Median :0.34988   Median :0.31306   Median :0.347999   Median :0.29337  
##  Mean   :0.35796   Mean   :0.32188   Mean   :0.358277   Mean   :0.30112  
##  3rd Qu.:0.43641   3rd Qu.:0.39777   3rd Qu.:0.437743   3rd Qu.:0.37109  
##  Max.   :0.99152   Max.   :0.91784   Max.   :0.939243   Max.   :0.94722  
##      tf_11             tf_12            tf_13            tf_14       
##  Min.   :0.02323   Min.   :0.0000   Min.   :0.0000   Min.   :0.0010  
##  1st Qu.:0.24833   1st Qu.:0.2320   1st Qu.:0.2180   1st Qu.:0.1800  
##  Median :0.32954   Median :0.3685   Median :0.3560   Median :0.2700  
##  Mean   :0.34012   Mean   :0.4015   Mean   :0.3884   Mean   :0.2946  
##  3rd Qu.:0.41764   3rd Qu.:0.5380   3rd Qu.:0.5255   3rd Qu.:0.3740  
##  Max.   :0.91427   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      tf_15            tf_16            tf_17            tf_18       
##  Min.   :0.0050   Min.   :0.0090   Min.   :0.0010   Min.   :0.0000  
##  1st Qu.:0.1480   1st Qu.:0.1750   1st Qu.:0.1520   1st Qu.:0.1620  
##  Median :0.2240   Median :0.2660   Median :0.2340   Median :0.2430  
##  Mean   :0.2418   Mean   :0.2969   Mean   :0.2542   Mean   :0.2624  
##  3rd Qu.:0.3100   3rd Qu.:0.3780   3rd Qu.:0.3280   3rd Qu.:0.3350  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      tf_19            tf_20            tf_21            tf_22       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.1690   1st Qu.:0.1520   1st Qu.:0.1645   1st Qu.:0.1360  
##  Median :0.2555   Median :0.2290   Median :0.2490   Median :0.2090  
##  Mean   :0.2814   Mean   :0.2513   Mean   :0.2803   Mean   :0.2276  
##  3rd Qu.:0.3565   3rd Qu.:0.3220   3rd Qu.:0.3545   3rd Qu.:0.2940  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      tf_23            tf_24               tf_25               tf_26          
##  Min.   :0.0000   Min.   :0.0002272   Min.   :0.0001521   Min.   :0.0004734  
##  1st Qu.:0.1550   1st Qu.:0.0658755   1st Qu.:0.0623974   1st Qu.:0.0537938  
##  Median :0.2380   Median :0.0860815   Median :0.0826507   Median :0.0743358  
##  Mean   :0.2644   Mean   :0.0858465   Mean   :0.0818259   Mean   :0.0763666  
##  3rd Qu.:0.3370   3rd Qu.:0.1058514   3rd Qu.:0.1011746   3rd Qu.:0.0969476  
##  Max.   :1.0000   Max.   :0.2218524   Max.   :0.2007435   Max.   :0.2227033  
##      tf_27               tf_28               tf_29          
##  Min.   :0.0001387   Min.   :0.0003291   Min.   :5.489e-05  
##  1st Qu.:0.0365433   1st Qu.:0.0526772   1st Qu.:4.383e-02  
##  Median :0.0538858   Median :0.0746778   Median :6.473e-02  
##  Mean   :0.0586044   Mean   :0.0759198   Mean   :6.774e-02  
##  3rd Qu.:0.0762886   3rd Qu.:0.0971429   3rd Qu.:8.809e-02  
##  Max.   :0.1926542   Max.   :0.2091382   Max.   :2.060e-01  
##      tf_30               tf_31               tf_32          
##  Min.   :0.0003117   Min.   :0.0002645   Min.   :0.0002199  
##  1st Qu.:0.0453248   1st Qu.:0.0550645   1st Qu.:0.0426507  
##  Median :0.0650111   Median :0.0777982   Median :0.0627404  
##  Mean   :0.0674917   Mean   :0.0785882   Mean   :0.0656460  
##  3rd Qu.:0.0870209   3rd Qu.:0.1007912   3rd Qu.:0.0858430  
##  Max.   :0.1920445   Max.   :0.2072419   Max.   :0.1958248  
##      tf_33               tf_34               tf_35              tf_36        
##  Min.   :0.0002017   Min.   :0.0007676   Min.   :0.001009   Min.   :0.00000  
##  1st Qu.:0.0560231   1st Qu.:0.0398864   1st Qu.:0.050964   1st Qu.:0.00500  
##  Median :0.0795397   Median :0.0598633   Median :0.073602   Median :0.01000  
##  Mean   :0.0801792   Mean   :0.0631989   Mean   :0.075348   Mean   :0.01878  
##  3rd Qu.:0.1030514   3rd Qu.:0.0833389   3rd Qu.:0.097432   3rd Qu.:0.02300  
##  Max.   :0.1995398   Max.   :0.2143355   Max.   :0.219708   Max.   :0.79400  
##      tf_37             tf_38             tf_39             tf_40        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00500   1st Qu.:0.00400   1st Qu.:0.00300   1st Qu.:0.00400  
##  Median :0.01100   Median :0.00800   Median :0.00700   Median :0.00800  
##  Mean   :0.01898   Mean   :0.01412   Mean   :0.01257   Mean   :0.01443  
##  3rd Qu.:0.02300   3rd Qu.:0.01700   3rd Qu.:0.01500   3rd Qu.:0.01800  
##  Max.   :0.43100   Max.   :0.40200   Max.   :0.40900   Max.   :0.33200  
##      tf_41             tf_42            tf_43             tf_44        
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00300   1st Qu.:0.0040   1st Qu.:0.00400   1st Qu.:0.00400  
##  Median :0.00700   Median :0.0080   Median :0.00800   Median :0.00800  
##  Mean   :0.01256   Mean   :0.0135   Mean   :0.01321   Mean   :0.01298  
##  3rd Qu.:0.01600   3rd Qu.:0.0170   3rd Qu.:0.01700   3rd Qu.:0.01600  
##  Max.   :0.22900   Max.   :0.3020   Max.   :0.39300   Max.   :0.30000  
##      tf_45             tf_46             tf_47             tf_48       
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.2470  
##  1st Qu.:0.00400   1st Qu.:0.00300   1st Qu.:0.00300   1st Qu.:1.0000  
##  Median :0.00800   Median :0.00700   Median :0.00700   Median :1.0000  
##  Mean   :0.01329   Mean   :0.01183   Mean   :0.01211   Mean   :0.9979  
##  3rd Qu.:0.01600   3rd Qu.:0.01500   3rd Qu.:0.01500   3rd Qu.:1.0000  
##  Max.   :0.24800   Max.   :0.24300   Max.   :0.23200   Max.   :1.0000  
##      tf_49            tf_50            tf_51            tf_52       
##  Min.   :0.0560   Min.   :0.2010   Min.   :0.0790   Min.   :0.1090  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.9974   Mean   :0.9955   Mean   :0.9893   Mean   :0.9945  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      tf_53            tf_54            tf_55            tf_56       
##  Min.   :0.0410   Min.   :0.1070   Min.   :0.1450   Min.   :0.0800  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.9928   Mean   :0.9935   Mean   :0.9955   Mean   :0.9926  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      tf_57            tf_58            tf_59            tf_60       
##  Min.   :0.1070   Min.   :0.1620   Min.   :0.2610   Min.   :0.2060  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:0.9760  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :0.9890  
##  Mean   :0.9953   Mean   :0.9919   Mean   :0.9951   Mean   :0.9791  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.9950  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      tf_61            tf_62            tf_63            tf_64       
##  Min.   :0.0520   Min.   :0.1990   Min.   :0.0750   Min.   :0.0980  
##  1st Qu.:0.9770   1st Qu.:0.9810   1st Qu.:0.9810   1st Qu.:0.9810  
##  Median :0.9890   Median :0.9910   Median :0.9920   Median :0.9910  
##  Mean   :0.9784   Mean   :0.9814   Mean   :0.9767   Mean   :0.9801  
##  3rd Qu.:0.9950   3rd Qu.:0.9960   3rd Qu.:0.9960   3rd Qu.:0.9960  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      tf_65            tf_66           tf_67            tf_68       
##  Min.   :0.0380   Min.   :0.104   Min.   :0.1370   Min.   :0.0750  
##  1st Qu.:0.9820   1st Qu.:0.981   1st Qu.:0.9820   1st Qu.:0.9820  
##  Median :0.9920   Median :0.991   Median :0.9920   Median :0.9920  
##  Mean   :0.9803   Mean   :0.980   Mean   :0.9823   Mean   :0.9797  
##  3rd Qu.:0.9960   3rd Qu.:0.996   3rd Qu.:0.9960   3rd Qu.:0.9960  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
##      tf_69           tf_70            tf_71           tf_72          
##  Min.   :0.107   Min.   :0.1590   Min.   :0.259   Min.   :-10.95189  
##  1st Qu.:0.982   1st Qu.:0.9840   1st Qu.:0.984   1st Qu.:  0.04715  
##  Median :0.992   Median :0.9920   Median :0.993   Median :  0.52633  
##  Mean   :0.982   Mean   :0.9801   Mean   :0.983   Mean   :  0.59706  
##  3rd Qu.:0.996   3rd Qu.:0.9970   3rd Qu.:0.997   3rd Qu.:  1.05774  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.000   Max.   :  8.65188  
##      tf_73              tf_74              tf_75             tf_76        
##  Min.   :-7.56555   Min.   :-13.0729   Min.   :-7.3019   Min.   :-4.0807  
##  1st Qu.: 0.09127   1st Qu.:  0.5229   1st Qu.: 0.7731   1st Qu.: 0.5119  
##  Median : 0.59927   Median :  0.9004   Median : 1.1620   Median : 0.9250  
##  Mean   : 0.69282   Mean   :  0.9693   Mean   : 1.2800   Mean   : 0.9888  
##  3rd Qu.: 1.16310   3rd Qu.:  1.3431   3rd Qu.: 1.6302   3rd Qu.: 1.3769  
##  Max.   :10.07884   Max.   : 12.3504   Max.   :11.7965   Max.   :11.9104  
##      tf_77             tf_78             tf_79             tf_80        
##  Min.   :-4.0374   Min.   :-3.7537   Min.   :-8.3136   Min.   :-2.5365  
##  1st Qu.: 0.7018   1st Qu.: 0.6819   1st Qu.: 0.5663   1st Qu.: 0.7318  
##  Median : 1.0954   Median : 1.0784   Median : 0.9689   Median : 1.1348  
##  Mean   : 1.2018   Mean   : 1.1784   Mean   : 1.0396   Mean   : 1.2405  
##  3rd Qu.: 1.5730   3rd Qu.: 1.5436   3rd Qu.: 1.4256   3rd Qu.: 1.6230  
##  Max.   :10.6874   Max.   :13.1238   Max.   :11.3182   Max.   :11.5638  
##      tf_81             tf_82             tf_83             tf_84         
##  Min.   :-3.0471   Min.   :-3.1581   Min.   :-2.1862   Min.   : -1.9576  
##  1st Qu.: 0.5588   1st Qu.: 0.8244   1st Qu.: 0.6375   1st Qu.: -1.2333  
##  Median : 0.9694   Median : 1.2219   Median : 1.0431   Median : -0.7995  
##  Mean   : 1.0357   Mean   : 1.3387   Mean   : 1.1294   Mean   :  0.2392  
##  3rd Qu.: 1.4290   3rd Qu.: 1.7114   3rd Qu.: 1.5151   3rd Qu.:  0.2677  
##  Max.   : 8.0471   Max.   :12.0842   Max.   : 8.5312   Max.   :126.7580  
##      tf_85              tf_86              tf_87              tf_88         
##  Min.   : -1.8700   Min.   : -1.9721   Min.   : -1.8104   Min.   : -1.9045  
##  1st Qu.: -1.1879   1st Qu.: -0.9005   1st Qu.: -0.3253   1st Qu.: -0.9129  
##  Median : -0.6915   Median : -0.1522   Median :  0.7843   Median : -0.1030  
##  Mean   :  0.5569   Mean   :  0.8097   Mean   :  2.1324   Mean   :  0.9006  
##  3rd Qu.:  0.5955   3rd Qu.:  1.1594   3rd Qu.:  2.6798   3rd Qu.:  1.3215  
##  Max.   :124.4269   Max.   :194.8380   Max.   :181.1530   Max.   :150.6000  
##      tf_89              tf_90              tf_91               tf_92         
##  Min.   : -1.9029   Min.   : -1.8449   Min.   : -1.89127   Min.   : -1.9191  
##  1st Qu.: -0.5909   1st Qu.: -0.6245   1st Qu.: -0.91587   1st Qu.: -0.5378  
##  Median :  0.4300   Median :  0.3738   Median : -0.08399   Median :  0.5464  
##  Mean   :  1.6441   Mean   :  1.5746   Mean   :  0.95283   Mean   :  1.8338  
##  3rd Qu.:  2.1869   3rd Qu.:  2.0788   3rd Qu.:  1.41657   3rd Qu.:  2.4113  
##  Max.   :129.4258   Max.   :265.3875   Max.   :157.55472   Max.   :165.0466  
##      tf_93             tf_94              tf_95              tf_96       
##  Min.   :-1.8735   Min.   : -1.8799   Min.   : -1.8931   Min.   : 3.324  
##  1st Qu.:-0.9458   1st Qu.: -0.3532   1st Qu.: -0.7850   1st Qu.:37.107  
##  Median :-0.1241   Median :  0.7962   Median :  0.1654   Median :42.245  
##  Mean   : 0.9142   Mean   :  2.1428   Mean   :  1.2965   Mean   :41.409  
##  3rd Qu.: 1.3867   3rd Qu.:  2.8106   3rd Qu.:  1.8309   3rd Qu.:46.471  
##  Max.   :87.6046   Max.   :149.7641   Max.   :100.3373   Max.   :62.748  
##      tf_97              tf_98              tf_99              tf_100        
##  Min.   :-243.182   Min.   :-215.844   Min.   :-141.606   Min.   :-124.311  
##  1st Qu.: -43.856   1st Qu.: -19.102   1st Qu.: -10.682   1st Qu.: -18.210  
##  Median :  -6.358   Median :   6.651   Median :  -1.068   Median :  -1.783  
##  Mean   : -12.025   Mean   :   9.478   Mean   :   2.432   Mean   :  -1.442  
##  3rd Qu.:  27.241   3rd Qu.:  32.376   3rd Qu.:  11.379   3rd Qu.:  14.366  
##  Max.   : 234.662   Max.   : 256.160   Max.   : 173.089   Max.   : 160.229  
##      tf_101            tf_102            tf_103            tf_104       
##  Min.   :-74.381   Min.   :-92.181   Min.   :-67.728   Min.   :-83.517  
##  1st Qu.:-21.430   1st Qu.:-14.831   1st Qu.: -6.513   1st Qu.: -5.845  
##  Median :-12.825   Median : -4.566   Median : -0.930   Median :  2.182  
##  Mean   :-11.539   Mean   : -4.846   Mean   : -1.259   Mean   :  1.735  
##  3rd Qu.: -3.594   3rd Qu.:  5.368   3rd Qu.:  4.163   3rd Qu.:  9.966  
##  Max.   : 94.051   Max.   :104.127   Max.   : 47.566   Max.   : 75.002  
##      tf_105             tf_106             tf_107            tf_108      
##  Min.   :-40.6908   Min.   :-36.5698   Min.   :-65.762   Min.   : 3.079  
##  1st Qu.: -3.2386   1st Qu.: -5.3619   1st Qu.: -3.319   1st Qu.:38.192  
##  Median :  0.8413   Median : -0.8569   Median :  2.111   Median :43.495  
##  Mean   :  0.9467   Mean   : -1.4724   Mean   :  2.477   Mean   :42.510  
##  3rd Qu.:  5.0300   3rd Qu.:  2.6965   3rd Qu.:  7.878   3rd Qu.:47.776  
##  Max.   : 37.3761   Max.   : 25.0965   Max.   : 65.691   Max.   :63.631  
##      tf_109             tf_110             tf_111              tf_112        
##  Min.   :-250.683   Min.   :-234.864   Min.   :-152.1990   Min.   :-128.908  
##  1st Qu.: -44.994   1st Qu.: -19.727   1st Qu.: -11.7170   1st Qu.: -18.912  
##  Median :  -5.478   Median :   6.876   Median :  -2.5920   Median :  -2.613  
##  Mean   : -12.200   Mean   :   9.362   Mean   :   0.7508   Mean   :  -2.240  
##  3rd Qu.:  28.655   3rd Qu.:  32.703   3rd Qu.:   9.3120   3rd Qu.:  13.277  
##  Max.   : 311.378   Max.   : 257.963   Max.   : 180.0560   Max.   : 162.701  
##      tf_113            tf_114             tf_115            tf_116       
##  Min.   :-83.912   Min.   :-101.256   Min.   :-69.949   Min.   :-82.676  
##  1st Qu.:-24.364   1st Qu.: -14.928   1st Qu.: -6.437   1st Qu.: -5.536  
##  Median :-16.644   Median :  -4.389   Median : -1.030   Median :  2.510  
##  Mean   :-15.278   Mean   :  -4.768   Mean   : -1.538   Mean   :  1.979  
##  3rd Qu.: -8.254   3rd Qu.:   5.782   3rd Qu.:  3.750   3rd Qu.: 10.363  
##  Max.   : 81.555   Max.   :  98.049   Max.   : 52.492   Max.   : 79.271  
##      tf_117             tf_118             tf_119            tf_120        
##  Min.   :-42.9800   Min.   :-33.0000   Min.   :-69.095   Min.   :  0.6919  
##  1st Qu.: -2.9960   1st Qu.: -4.4840   1st Qu.: -3.152   1st Qu.: 18.4881  
##  Median :  0.9475   Median : -0.2370   Median :  2.286   Median : 29.5138  
##  Mean   :  0.9839   Mean   : -0.8137   Mean   :  2.663   Mean   : 35.4763  
##  3rd Qu.:  4.9375   3rd Qu.:  3.1260   3rd Qu.:  8.000   3rd Qu.: 45.3671  
##  Max.   : 36.9870   Max.   : 24.0800   Max.   : 64.514   Max.   :502.1328  
##      tf_121            tf_122             tf_123             tf_124       
##  Min.   :  113.6   Min.   :   49.06   Min.   :   80.56   Min.   :  31.25  
##  1st Qu.: 1470.5   1st Qu.: 1046.87   1st Qu.:  815.65   1st Qu.: 535.10  
##  Median : 2374.4   Median : 1656.29   Median : 1302.42   Median : 772.59  
##  Mean   : 2916.0   Mean   : 2024.58   Mean   : 1658.78   Mean   : 908.28  
##  3rd Qu.: 3680.8   3rd Qu.: 2543.97   3rd Qu.: 2047.67   3rd Qu.:1125.14  
##  Max.   :32701.5   Max.   :21856.95   Max.   :27569.97   Max.   :8627.19  
##      tf_125             tf_126            tf_127            tf_128       
##  Min.   :   24.39   Min.   :  35.84   Min.   :  35.98   Min.   :  19.83  
##  1st Qu.:  440.78   1st Qu.: 353.79   1st Qu.: 299.87   1st Qu.: 231.66  
##  Median :  721.88   Median : 516.57   Median : 452.04   Median : 338.84  
##  Mean   :  907.69   Mean   : 604.64   Mean   : 562.97   Mean   : 405.38  
##  3rd Qu.: 1166.00   3rd Qu.: 755.05   3rd Qu.: 695.84   3rd Qu.: 499.37  
##  Max.   :10475.04   Max.   :7789.86   Max.   :4886.78   Max.   :6472.80  
##      tf_129            tf_130            tf_131            tf_132      
##  Min.   :  29.37   Min.   :  23.98   Min.   :  16.84   Min.   : 0.000  
##  1st Qu.: 191.88   1st Qu.: 154.22   1st Qu.: 173.43   1st Qu.: 0.000  
##  Median : 283.29   Median : 241.34   Median : 244.58   Median : 1.497  
##  Mean   : 331.46   Mean   : 308.12   Mean   : 291.23   Mean   : 5.519  
##  3rd Qu.: 415.37   3rd Qu.: 381.06   3rd Qu.: 349.60   3rd Qu.: 8.860  
##  Max.   :2599.63   Max.   :4321.08   Max.   :3331.25   Max.   :51.110  
##      tf_133           tf_134            tf_135            tf_136       
##  Min.   :-371.5   Min.   :-347.91   Min.   :-504.45   Min.   :-299.05  
##  1st Qu.:-213.6   1st Qu.:-168.55   1st Qu.:-217.05   1st Qu.:-112.04  
##  Median :-165.3   Median :-132.11   Median :-158.86   Median : -87.06  
##  Mean   :-163.3   Mean   :-131.10   Mean   :-173.25   Mean   : -88.69  
##  3rd Qu.:-115.9   3rd Qu.: -94.92   3rd Qu.:-116.52   3rd Qu.: -62.37  
##  Max.   : 121.4   Max.   : 161.03   Max.   : -22.35   Max.   :  57.49  
##      tf_137            tf_138            tf_139             tf_140        
##  Min.   :-276.39   Min.   :-257.55   Min.   :-226.670   Min.   :-231.530  
##  1st Qu.:-118.07   1st Qu.:-102.04   1st Qu.:-101.714   1st Qu.: -79.399  
##  Median : -85.53   Median : -83.07   Median : -80.389   Median : -62.760  
##  Mean   :-101.78   Mean   : -85.48   Mean   : -82.929   Mean   : -66.120  
##  3rd Qu.: -68.14   3rd Qu.: -66.71   3rd Qu.: -61.507   3rd Qu.: -48.635  
##  Max.   : -30.63   Max.   :  43.46   Max.   :  -1.114   Max.   :   2.618  
##      tf_141             tf_142             tf_143             tf_144      
##  Min.   :-156.210   Min.   :-253.579   Min.   :-181.450   Min.   : 8.346  
##  1st Qu.: -77.912   1st Qu.: -97.351   1st Qu.: -66.186   1st Qu.:47.267  
##  Median : -62.728   Median : -74.732   Median : -51.720   Median :51.088  
##  Mean   : -63.601   Mean   : -79.356   Mean   : -54.502   Mean   :50.258  
##  3rd Qu.: -48.144   3rd Qu.: -56.536   3rd Qu.: -40.098   3rd Qu.:53.982  
##  Max.   :  -0.367   Max.   :  -8.539   Max.   :   9.337   Max.   :65.610  
##      tf_145           tf_146           tf_147           tf_148      
##  Min.   :-70.71   Min.   :-49.49   Min.   :-35.18   Min.   :-50.37  
##  1st Qu.:153.51   1st Qu.:105.95   1st Qu.:142.62   1st Qu.: 70.26  
##  Median :171.13   Median :142.43   Median :210.33   Median : 96.54  
##  Mean   :187.40   Mean   :150.69   Mean   :221.84   Mean   :101.09  
##  3rd Qu.:217.64   3rd Qu.:186.48   3rd Qu.:297.58   3rd Qu.:125.72  
##  Max.   :603.94   Max.   :427.40   Max.   :497.26   Max.   :349.60  
##      tf_149           tf_150           tf_151           tf_152      
##  Min.   :-50.74   Min.   :-22.40   Min.   : 10.29   Min.   :-30.94  
##  1st Qu.: 98.07   1st Qu.: 54.65   1st Qu.: 77.94   1st Qu.: 48.68  
##  Median :136.42   Median : 71.03   Median :100.14   Median : 63.93  
##  Mean   :141.07   Mean   : 74.54   Mean   :102.88   Mean   : 65.95  
##  3rd Qu.:179.99   3rd Qu.: 89.97   3rd Qu.:124.44   3rd Qu.: 80.70  
##  Max.   :390.57   Max.   :276.49   Max.   :259.93   Max.   :217.03  
##      tf_153            tf_154            tf_155            tf_156      
##  Min.   :  5.865   Min.   :  3.629   Min.   : -1.133   Min.   : 6.486  
##  1st Qu.: 58.311   1st Qu.: 45.053   1st Qu.: 42.799   1st Qu.:39.470  
##  Median : 74.663   Median : 58.840   Median : 54.579   Median :46.496  
##  Mean   : 76.425   Mean   : 63.667   Mean   : 57.490   Mean   :44.739  
##  3rd Qu.: 92.429   3rd Qu.: 77.563   3rd Qu.: 69.050   3rd Qu.:51.565  
##  Max.   :189.861   Max.   :239.455   Max.   :168.988   Max.   :64.333  
##      tf_157           tf_158           tf_159           tf_160      
##  Min.   : 78.17   Min.   : 56.75   Min.   : 77.31   Min.   : 31.76  
##  1st Qu.:284.37   1st Qu.:227.99   1st Qu.:293.39   1st Qu.:152.62  
##  Median :344.87   Median :272.76   Median :387.71   Median :183.77  
##  Mean   :350.70   Mean   :281.79   Mean   :395.09   Mean   :189.78  
##  3rd Qu.:409.13   3rd Qu.:325.90   3rd Qu.:484.95   3rd Qu.:220.14  
##  Max.   :832.42   Max.   :657.64   Max.   :968.70   Max.   :493.52  
##      tf_161          tf_162           tf_163           tf_164      
##  Min.   : 24.5   Min.   : 29.77   Min.   : 35.12   Min.   : 27.16  
##  1st Qu.:183.1   1st Qu.:130.75   1st Qu.:149.07   1st Qu.:104.83  
##  Median :235.6   Median :154.89   Median :182.75   Median :127.57  
##  Mean   :242.8   Mean   :160.02   Mean   :185.81   Mean   :132.07  
##  3rd Qu.:295.2   3rd Qu.:183.73   3rd Qu.:217.98   3rd Qu.:155.03  
##  Max.   :564.7   Max.   :432.39   Max.   :433.16   Max.   :388.21  
##      tf_165           tf_166           tf_167           tf_168       
##  Min.   : 35.75   Min.   : 30.66   Min.   : 20.85   Min.   :-19.512  
##  1st Qu.:114.50   1st Qu.:109.05   1st Qu.: 88.64   1st Qu.: -3.170  
##  Median :138.40   Median :136.52   Median :107.46   Median : -1.986  
##  Mean   :140.03   Mean   :143.02   Mean   :111.99   Mean   : -2.447  
##  3rd Qu.:162.93   3rd Qu.:169.97   3rd Qu.:130.64   3rd Qu.: -1.182  
##  Max.   :299.15   Max.   :407.73   Max.   :294.39   Max.   :  2.361  
##      tf_169            tf_170              tf_171              tf_172       
##  Min.   :-4.7402   Min.   :-5.396925   Min.   :-12.02860   Min.   :-4.1936  
##  1st Qu.:-0.2684   1st Qu.:-0.414407   1st Qu.: -0.09889   1st Qu.:-0.1049  
##  Median : 0.1964   Median :-0.004986   Median :  0.34573   Median : 0.1743  
##  Mean   : 0.2392   Mean   :-0.007359   Mean   :  0.59404   Mean   : 0.2161  
##  3rd Qu.: 0.6902   3rd Qu.: 0.394315   3rd Qu.:  1.00285   3rd Qu.: 0.4901  
##  Max.   : 8.3299   Max.   : 4.320025   Max.   : 14.12818   Max.   : 4.1059  
##      tf_173            tf_174             tf_175             tf_176        
##  Min.   :-7.7519   Min.   :-3.13281   Min.   :-4.65733   Min.   :-4.96988  
##  1st Qu.: 0.5455   1st Qu.:-0.29300   1st Qu.:-0.05163   1st Qu.:-0.33943  
##  Median : 0.9144   Median :-0.03025   Median : 0.21997   Median :-0.06324  
##  Mean   : 1.1212   Mean   :-0.02234   Mean   : 0.29160   Mean   :-0.09645  
##  3rd Qu.: 1.4161   3rd Qu.: 0.23554   3rd Qu.: 0.54421   3rd Qu.: 0.19299  
##  Max.   :13.1137   Max.   : 5.40988   Max.   : 8.12990   Max.   : 2.79431  
##      tf_177             tf_178              tf_179             tf_180       
##  Min.   :-5.57343   Min.   :-8.729508   Min.   :-5.83752   Min.   : -1.850  
##  1st Qu.:-0.20911   1st Qu.:-0.624572   1st Qu.:-0.30783   1st Qu.:  2.276  
##  Median : 0.07208   Median :-0.282591   Median :-0.06356   Median :  6.802  
##  Mean   : 0.12936   Mean   :-0.375540   Mean   :-0.07301   Mean   : 15.548  
##  3rd Qu.: 0.38122   3rd Qu.:-0.005992   3rd Qu.: 0.17429   3rd Qu.: 16.837  
##  Max.   : 7.07485   Max.   : 9.859152   Max.   : 3.54022   Max.   :559.856  
##      tf_181             tf_182             tf_183            tf_184         
##  Min.   : -1.7964   Min.   :-1.82603   Min.   : -1.349   Min.   :-1.560700  
##  1st Qu.:  0.2287   1st Qu.: 0.02774   1st Qu.:  1.316   1st Qu.:-0.009855  
##  Median :  1.0590   Median : 0.68410   Median :  3.741   Median : 0.435811  
##  Mean   :  2.2087   Mean   : 1.54428   Mean   : 11.409   Mean   : 0.872021  
##  3rd Qu.:  2.5427   3rd Qu.: 1.95835   3rd Qu.: 11.085   3rd Qu.: 1.160318  
##  Max.   :143.6847   Max.   :62.44063   Max.   :273.071   Max.   :28.445503  
##      tf_185            tf_186             tf_187             tf_188       
##  Min.   : -1.453   Min.   :-1.89183   Min.   : -1.3262   Min.   :-1.4040  
##  1st Qu.:  1.042   1st Qu.: 0.04735   1st Qu.:  0.6917   1st Qu.: 0.1297  
##  Median :  2.580   Median : 0.46684   Median :  1.6021   Median : 0.5754  
##  Mean   :  6.859   Mean   : 0.84823   Mean   :  2.9081   Mean   : 0.9219  
##  3rd Qu.:  6.263   3rd Qu.: 1.14055   3rd Qu.:  3.3007   3rd Qu.: 1.2112  
##  Max.   :275.675   Max.   :44.04563   Max.   :117.3948   Max.   :39.6927  
##      tf_189            tf_190            tf_191            tf_192       
##  Min.   :-1.5411   Min.   : -1.520   Min.   :-1.6797   Min.   :-54.534  
##  1st Qu.: 0.5696   1st Qu.:  0.754   1st Qu.: 0.1188   1st Qu.:-18.681  
##  Median : 1.2093   Median :  1.671   Median : 0.5245   Median :-13.774  
##  Mean   : 2.1753   Mean   :  4.114   Mean   : 0.8285   Mean   :-14.795  
##  3rd Qu.: 2.3886   3rd Qu.:  3.805   3rd Qu.: 1.1154   3rd Qu.: -9.898  
##  Max.   :78.5359   Max.   :139.872   Max.   :58.4638   Max.   :  4.696  
##      tf_193            tf_194             tf_195           tf_196       
##  Min.   :-54.920   Min.   :  0.3732   Min.   :-60.00   Min.   :-46.887  
##  1st Qu.:-17.580   1st Qu.: 17.6565   1st Qu.:-60.00   1st Qu.: -8.435  
##  Median :-12.629   Median : 29.6852   Median :-56.37   Median : -5.019  
##  Mean   :-13.747   Mean   : 36.2056   Mean   :-51.37   Mean   : -5.868  
##  3rd Qu.: -8.729   3rd Qu.: 47.3047   3rd Qu.:-45.88   3rd Qu.: -2.561  
##  Max.   :  5.323   Max.   :487.9831   Max.   : -2.62   Max.   :  7.730  
##      tf_197           tf_198            tf_199            tf_200       
##  Min.   : 3.552   Min.   :-20.449   Min.   : -1.863   Min.   :0.01380  
##  1st Qu.:38.818   1st Qu.: -3.222   1st Qu.:  2.000   1st Qu.:0.04781  
##  Median :48.481   Median : -1.961   Median :  6.779   Median :0.05800  
##  Mean   :45.500   Mean   : -2.509   Mean   : 17.942   Mean   :0.06384  
##  3rd Qu.:54.527   3rd Qu.: -1.121   3rd Qu.: 17.827   3rd Qu.:0.07004  
##  Max.   :66.735   Max.   :  2.937   Max.   :531.945   Max.   :2.22713  
##      tf_201            tf_202              tf_203              tf_204         
##  Min.   :0.01082   Min.   :3.900e-05   Min.   :-0.011560   Min.   :  0.04567  
##  1st Qu.:0.03512   1st Qu.:1.424e-03   1st Qu.: 0.000000   1st Qu.:  0.34280  
##  Median :0.04367   Median :2.512e-03   Median : 0.004800   Median :  0.52046  
##  Mean   :0.04505   Mean   :4.082e-02   Mean   : 0.004679   Mean   :  0.96361  
##  3rd Qu.:0.05232   3rd Qu.:5.369e-03   3rd Qu.: 0.008480   3rd Qu.:  0.92334  
##  Max.   :0.72013   Max.   :2.708e+02   Max.   : 0.080160   Max.   :204.87518  
##      tf_205              tf_206           tf_207             tf_208        
##  Min.   :  0.04415   Min.   :-0.263   Min.   :  -1.184   Min.   :-58.8064  
##  1st Qu.:  0.33856   1st Qu.: 2.629   1st Qu.:  10.499   1st Qu.:-27.5929  
##  Median :  0.51549   Median : 3.670   Median :  20.816   Median :-21.9067  
##  Mean   :  0.95893   Mean   : 5.044   Mean   :  62.825   Mean   :-22.6967  
##  3rd Qu.:  0.92009   3rd Qu.: 5.564   3rd Qu.:  49.219   3rd Qu.:-17.2276  
##  Max.   :204.86661   Max.   :77.708   Max.   :6289.178   Max.   :  0.7634  
##      tf_209            tf_210             tf_211           tf_212       
##  Min.   :-59.224   Min.   :  0.9751   Min.   :-60.00   Min.   :-52.821  
##  1st Qu.:-26.503   1st Qu.: 27.8607   1st Qu.:-60.00   1st Qu.:-14.019  
##  Median :-20.535   Median : 42.3295   Median :-60.00   Median :-10.026  
##  Mean   :-21.520   Mean   : 49.9068   Mean   :-59.52   Mean   :-10.883  
##  3rd Qu.:-15.723   3rd Qu.: 63.2610   3rd Qu.:-60.00   3rd Qu.: -6.926  
##  Max.   :  1.803   Max.   :523.0599   Max.   :-16.48   Max.   :  5.666  
##      tf_213           tf_214             tf_215            tf_216      
##  Min.   : 7.179   Min.   :-17.9662   Min.   : -1.868   Min.   :0.1290  
##  1st Qu.:45.471   1st Qu.: -2.5873   1st Qu.:  1.229   1st Qu.:0.2424  
##  Median :49.583   Median : -1.5651   Median :  4.355   Median :0.2860  
##  Mean   :48.641   Mean   : -1.9660   Mean   : 10.746   Mean   :0.3090  
##  3rd Qu.:52.832   3rd Qu.: -0.8755   3rd Qu.: 11.408   3rd Qu.:0.3391  
##  Max.   :65.666   Max.   :  1.6638   Max.   :423.621   Max.   :5.2114  
##      tf_217            tf_218              tf_219            tf_220        
##  Min.   :0.09828   Min.   :  0.00052   Min.   :0.06000   Min.   :  0.3222  
##  1st Qu.:0.20875   1st Qu.:  0.02132   1st Qu.:0.06308   1st Qu.:  1.8171  
##  Median :0.24274   Median :  0.04215   Median :0.06449   Median :  3.0941  
##  Mean   :0.25538   Mean   :  0.16388   Mean   :0.06853   Mean   :  4.1834  
##  3rd Qu.:0.28531   3rd Qu.:  0.08752   3rd Qu.:0.07007   3rd Qu.:  5.1475  
##  Max.   :1.68057   Max.   :375.74478   Max.   :0.34200   Max.   :226.3268  
##      tf_221             tf_222           tf_223        
##  Min.   :  0.2246   Min.   :-3.567   Min.   :  -1.688  
##  1st Qu.:  1.7497   1st Qu.: 2.867   1st Qu.:  15.566  
##  Median :  3.0263   Median : 5.502   Median :  55.875  
##  Mean   :  4.1149   Mean   : 7.605   Mean   : 138.932  
##  3rd Qu.:  5.0798   3rd Qu.:10.598   3rd Qu.: 175.939  
##  Max.   :226.2441   Max.   :67.042   Max.   :4790.697

Variance Analysis for Standardization

The temporal feature set consists of continuous audio descriptors extracted from the signal over time. Due to high dimensionality (223 variables), heterogeneous scales, and strong correlations between features, direct clustering or distance-based analysis would be unreliable.

vars <- apply(select(echonest_clean, -track_id), 2, var, na.rm = TRUE)
summary(vars)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##       0.0       0.0       7.6   46996.0     446.3 4872198.0

Features show substantial variance heterogeneity, ranging from near-zero to several millions. Some features are scaled 0-1 (temporal features from tf_0 to tf_71), others range up to hundred, and some extend to 30000, with corresponding variances gap. This necessitates standardization to ensure equal feature importance in PCA.

var_temporal <- apply(echonest_clean, 2, var)
hist(log10(var_temporal) + 1.3,
     main = "Distribution of temporal feature variances (log scale)",
     xlab = "log10(variance)")

The large heterogeneity in variances across variables indicates that some features would dominate principal components purely due to scale differences. Therefore, data standardization is essential prior to PCA to give equal importance to all temporal features.

Dimenstion Reduction Analysis (with Principle Componetn Analysis - PCA)

Feature Selection and Scaling

# Select only temporal features for dimension reduction
X_temporal <- echonest_clean %>%
  select(starts_with("tf_"))

# Note: scaling will be performed directly in the PCA procedure

Performing PCA with Standardization

pca_temporal <- PCA(
  X_temporal,
  scale.unit = TRUE, # to ensure standardization (scaling) is applied during PCA analysis.
  ncp = ncol(X_temporal),
  graph = FALSE
)

Results - Scree Plot: Variance Explained

eig_vals <- get_eigenvalue(pca_temporal)
head(eig_vals)
##       eigenvalue variance.percent cumulative.variance.percent
## Dim.1  26.372606        11.773485                    11.77349
## Dim.2  19.679721         8.785590                    20.55907
## Dim.3  11.088889         4.950397                    25.50947
## Dim.4   7.563873         3.376729                    28.88620
## Dim.5   6.267807         2.798128                    31.68433
## Dim.6   5.927654         2.646274                    34.33060
fviz_eig(
  pca_temporal,
  addlabels = TRUE,
)

The scree plot shows a sharp decrease in explained variance for the first components, followed by a smoother decay. Only a limited number of principal components capture most of the information, suggesting effective dimensionality reduction is possible.

Determining Optimal Number of Components

We can apply a simple rule to choose the number of components—retain those explaining at least 50% and then 70% of total variance.

eig_vals <- pca_temporal$eig
cum_var <- cumsum(eig_vals[, 2])
n_comp_50 <- which(cum_var >= 50)[1]
n_comp_70 <- which(cum_var >= 70)[1]

cat("Components for 50% variance:", n_comp_50, "\n")
## Components for 50% variance: 14
cat("Components for 70% variance:", n_comp_70, "\n")
## Components for 70% variance: 31

Based on the cumulative explained variance criterion, the first 14 principal components are sufficient to retain at least 50% of the total variance (which represents a dimensionality reduction from 223 to 14, or ~93.7% of the original dimensions). To explain at 70% of variance, we need to keep 31 components (which represents a dimensionality reduction of ~86,1% of the original dimension).

Variables Representation

# fviz_pca_var(
#   pca_temporal,
#   geom = "point",
#   col.var = "contrib",
#   gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07")
# )

fviz_pca_var(pca_temporal, 
             col.var = "contrib",
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"))

Variables pointing in similar directions are positively correlated, while those in opposite directions are negatively correlated. Variables close to the center contribute less to the first two principal components. The color gradient indicates each variable’s contribution to the principal dimensions, red being towars the highest and blue towards the lowest.

Variable Contributions to Dim-1

fviz_contrib(
  pca_temporal,
  choice = "var",
  axes = 1,
  top = 15
)

This plot shows the top 15 temporal features contributing most to the first principal component (Dim-1). Features with higher contribution percentages are more important in defining the primary direction of variance in the dataset.

Individuals Projection

fviz_pca_ind(
  pca_temporal,
  alpha.ind = 0.2,
  pointsize = 0.5
)

This projection displays all individuals in the space defined by the first two principal components. However, due to the high number of observations, the plot is heavily over-crowded, making it difficult to visually identify any clear structure or separation between observations.

Most points are concentrated near the center, suggesting that the majority of tracks share similar temporal audio profiles in the reduced space. A few outliers can be observed, corresponding to tracks with more distinctive temporal characteristics. This highlights some limitations of individual-level PCA visualizations for large datasets.

Conclusion

Principal Component Analysis successfully reduced the dimensionality of the temporal feature space from 223 to 14 dimensions while retaining 50% of the total variance (or 31 by retaining 70%). This transformation: - Reduces computational complexity for clustering tasks, - Eliminates redundancy by combining correlated features, - Facilitates visualization through low-dimensional projections - Maintains information content with minimal loss

The heterogeneous variance scales across temporal features necessitated standardization before PCA. The resulting principal components capture the dominant patterns of variation in the audio temporal characteristics, enabling more efficient and interpretable analysis of the music dataset.