##
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Warning: package 'ggplot2' was built under R version 4.4.3
## Warning: package 'knitr' was built under R version 4.4.3
##
## Adjuntando el paquete: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
La Inteligencia Artificial (IA) ha transformado profundamente múltiples sectores, consolidándose como una herramienta esencial para enfrentar desafíos complejos y mejorar la eficiencia en diversas industrias. En el corazón de la IA están los algoritmos que capacitan a las máquinas para aprender de grandes cantidades de datos y tomar decisiones informadas. Cuando estos algoritmos se entrenan correctamente, pueden clasificar información, hacer predicciones precisas y descubrir patrones en escenarios donde los métodos tradicionales resultan ineficaces. No obstante, la efectividad de los modelos de IA depende en gran medida de la selección del algoritmo adecuado, la plataforma de desarrollo empleada y el tipo de problema que se busca resolver.
En este analisis estadistico descriptivo se estudiara una base de datos que contiene el desempeño de varios algoritmos de inteligencia artificial sobre un problema especifico, que contiene el desempeño, la precisión, tiempo de entrenamiento y otras caracteristicas correspondientes al proceso de cada algoritmo, caracteristicas que se compararan con el objetivo de lograr el objetivo planteado.
En este análisis exploratorio de datos (EDA), se buscará analizar la variación en la media de todas las variables en función del tipo de algoritmo de Inteligencia Artificial utilizado enfocados en un tipo de problema especifico, con el fin de identificar diferencias significativas en el desempeño de los modelos y evaluar qué algoritmos presentan una mayor estabilidad en sus resultados.
| Algorithm | Framework | Problem_Type | Dataset_Type | Accuracy | Precision | Recall | F1_Score | Training_Time | Date |
|---|---|---|---|---|---|---|---|---|---|
| SVM | Scikit-learn | Regression | Time Series | 0.6618051 | 0.6929447 | NA | 0.4426950 | 4.9785924 | 2023-03-08 11:26:21 |
| K-Means | Keras | Clustering | Time Series | 0.7443216 | 0.4900292 | 0.8766533 | 0.4414046 | NA | 2023-03-09 11:26:21 |
| Neural Network | Keras | Clustering | Image | 0.8852037 | 0.5948056 | 0.9685424 | 0.9644707 | 3.2825938 | 2023-03-10 11:26:21 |
| SVM | Keras | Clustering | Text | 0.8416477 | 0.8424142 | 0.8748388 | 0.7041523 | 4.0416289 | 2023-03-11 11:26:21 |
| SVM | Scikit-learn | Regression | Tabular | 0.7229514 | 0.6856109 | 0.3010956 | 0.6456472 | 3.6039908 | 2023-03-12 11:26:21 |
| K-Means | PyTorch | Regression | Image | 0.6368133 | 0.6255330 | 7.4548096 | 0.8865271 | 3.0064753 | 2023-03-13 11:26:21 |
| Neural Network | PyTorch | Regression | Text | 0.9985623 | 0.6366858 | 0.3357948 | 0.9014956 | NA | 2023-03-14 11:26:21 |
| Neural Network | Scikit-learn | Regression | Image | 0.7130907 | 0.6756681 | 0.4803251 | 0.5993146 | 2.3283453 | 2023-03-15 11:26:21 |
| SVM | Keras | Regression | Time Series | NA | 0.8710099 | 0.3416673 | 0.8161708 | 3.4064529 | 2023-03-16 11:26:21 |
| Random Forest | Keras | Regression | Text | 0.5818119 | 0.9352508 | NA | 0.8626737 | 3.4199049 | 2023-03-17 11:26:21 |
| SVM | PyTorch | Regression | Image | 0.8974048 | 9.7320081 | 0.7806129 | 0.7927904 | 1.9283008 | 2023-03-18 11:26:21 |
| SVM | Keras | Clustering | Image | 0.8468411 | 0.8721420 | 0.3801413 | 0.4909570 | 4.7142907 | 2023-03-19 11:26:21 |
| SVM | TensorFlow | Clustering | Tabular | 0.6103848 | 0.5892441 | 0.5686872 | 0.9255299 | 0.9200495 | 2023-03-20 11:26:21 |
| SVM | PyTorch | Clustering | Image | 0.5411905 | 0.8128808 | 0.6193656 | 0.7234567 | 2.5517613 | 2023-03-21 11:26:21 |
| K-Means | Keras | Clustering | Text | 0.8402497 | 0.6625619 | 0.5583371 | 0.5694835 | 3.4853315 | 2023-03-22 11:26:21 |
| Neural Network | PyTorch | Regression | Text | NA | 0.5528024 | 0.3847175 | 0.6551369 | 3.5159654 | 2023-03-23 11:26:21 |
| K-Means | TensorFlow | Classification | Tabular | 0.6366298 | 0.9045229 | 0.5932635 | 0.4225427 | 3.2783309 | 2023-03-24 11:26:21 |
| K-Means | PyTorch | Regression | Text | 0.9754318 | 0.4230558 | 0.8258246 | 0.4767201 | 1.4489122 | 2023-03-25 11:26:21 |
| K-Means | PyTorch | Classification | Time Series | 0.5755289 | 0.9410572 | 0.3497054 | 0.8593281 | 0.8654122 | 2023-03-26 11:26:21 |
| SVM | PyTorch | Clustering | Text | 0.7161674 | 0.6768865 | 0.3561260 | 0.4000070 | 3.2161076 | 2023-03-27 11:26:21 |
| Random Forest | PyTorch | Regression | Text | 9.7180796 | 0.7823209 | 0.5483399 | 0.6499395 | 3.0365804 | 2023-03-28 11:26:21 |
| Neural Network | TensorFlow | Clustering | Image | 0.7098637 | 0.7956124 | 0.9592080 | 0.7135061 | 0.9788445 | 2023-03-29 11:26:21 |
| Random Forest | Scikit-learn | Regression | Image | 0.8192630 | 0.9370706 | 0.7680009 | 0.4327807 | 3.5551818 | 2023-03-30 11:26:21 |
| K-Means | PyTorch | Clustering | Text | 0.6987972 | 0.7820018 | 0.7750690 | 0.9838469 | 2.3303428 | 2023-03-31 11:26:21 |
| K-Means | PyTorch | Classification | Tabular | 0.6371076 | 0.7683602 | 0.5533440 | 0.5356752 | 3.3720269 | 2023-04-01 11:26:21 |
| Random Forest | Keras | Classification | Image | 0.9919888 | 0.4399912 | 0.7155626 | 0.5825192 | 4.2030987 | 2023-04-02 11:26:21 |
| Random Forest | PyTorch | Classification | Tabular | 0.7046670 | 0.7110448 | 0.3070918 | 0.5823655 | 0.9316693 | 2023-04-03 11:26:21 |
| Random Forest | Keras | Regression | Text | 0.9470496 | 0.4901014 | 0.7452672 | 0.5382500 | 0.1938099 | 2023-04-04 11:26:21 |
| K-Means | Scikit-learn | Classification | Text | 0.6149773 | 0.8424603 | 0.9393009 | 0.4008843 | 3.9176027 | 2023-04-05 11:26:21 |
| K-Means | TensorFlow | Regression | Time Series | NA | 0.7073332 | 0.7288014 | 0.8376069 | 3.0875174 | 2023-04-06 11:26:21 |
| Neural Network | TensorFlow | Classification | Image | 0.5155670 | 0.8081367 | 0.9115890 | 0.9801073 | 3.5282339 | 2023-04-07 11:26:21 |
| Neural Network | Scikit-learn | Classification | Text | 0.8258334 | 0.4250037 | NA | 0.5345761 | 4.2069594 | 2023-04-08 11:26:21 |
| K-Means | TensorFlow | Regression | Time Series | 0.6842632 | 0.4508752 | 0.3843909 | 0.7978283 | 4.0337736 | 2023-04-09 11:26:21 |
| Random Forest | Scikit-learn | Regression | Image | NA | 0.8297940 | 0.9317173 | 8.4513780 | 4.8085087 | 2023-04-10 11:26:21 |
| Random Forest | Scikit-learn | Classification | Text | 0.7366050 | 0.4432506 | 0.3465107 | 0.9090552 | 2.7260819 | 2023-04-11 11:26:21 |
| Neural Network | Scikit-learn | Regression | Text | 0.9840967 | 0.4427540 | 0.6737772 | 0.6535775 | 2.4936286 | 2023-04-12 11:26:21 |
| K-Means | TensorFlow | Classification | Image | 5.9276276 | NA | 0.3994960 | 0.5817585 | 2.0692473 | 2023-04-13 11:26:21 |
| Neural Network | Keras | Regression | Image | 0.9343116 | 0.9739008 | 0.3081946 | 0.5951771 | 0.8530861 | 2023-04-14 11:26:21 |
| Neural Network | Scikit-learn | Clustering | Image | 0.8882984 | 0.8425050 | 0.5954240 | 0.8275728 | NA | 2023-04-15 11:26:21 |
| SVM | PyTorch | Clustering | Text | 0.8854609 | 0.6119508 | 0.5065285 | 0.8900677 | 1.4573614 | 2023-04-16 11:26:21 |
| SVM | TensorFlow | Clustering | Text | 0.9223916 | 0.5779213 | 0.6402003 | 0.5089684 | 4.6144068 | 2023-04-17 11:26:21 |
| SVM | Scikit-learn | Clustering | Time Series | 0.8805120 | 0.6098219 | 0.7040399 | NA | 2.9576349 | 2023-04-18 11:26:21 |
| Random Forest | Scikit-learn | Clustering | Tabular | 0.8131102 | 0.8647921 | NA | 0.9411641 | 3.0049169 | 2023-04-19 11:26:21 |
| K-Means | PyTorch | Classification | Image | 0.5656224 | 0.7968224 | 0.3861023 | 0.8840161 | 1.8391308 | 2023-04-20 11:26:21 |
| K-Means | Keras | Clustering | Text | NA | 0.5111173 | 0.6910497 | 0.9909150 | 0.3547478 | 2023-04-21 11:26:21 |
| K-Means | Keras | Clustering | Text | 0.9604239 | 0.5044656 | 0.5402171 | 0.8525490 | 0.2555445 | 2023-04-22 11:26:21 |
| K-Means | Keras | Clustering | Image | 0.8083252 | 0.4590374 | 0.8104214 | 0.6359171 | 2.1743422 | 2023-04-23 11:26:21 |
| SVM | Scikit-learn | Clustering | Tabular | 0.8982686 | 0.7961816 | 0.7566042 | 0.7543827 | 0.5143704 | 2023-04-24 11:26:21 |
| Random Forest | Scikit-learn | Regression | Image | 0.7407612 | 0.8586236 | 0.8919231 | 0.7966086 | NA | 2023-04-25 11:26:21 |
| Random Forest | Scikit-learn | Classification | Tabular | 0.5586541 | 0.5590279 | 0.7847450 | 0.4470735 | 4.4167677 | 2023-04-26 11:26:21 |
| SVM | TensorFlow | Clustering | Text | 0.5625929 | 0.4125670 | 0.6009518 | 0.7266982 | 4.4262826 | 2023-04-27 11:26:21 |
| Random Forest | PyTorch | Clustering | Tabular | 0.8427826 | 0.4493030 | 0.7710766 | 0.8255925 | 3.3293225 | 2023-04-28 11:26:21 |
| SVM | Scikit-learn | Clustering | Time Series | 0.7151529 | 0.9807160 | 0.4927668 | 0.5003928 | 1.1350360 | 2023-04-29 11:26:21 |
| K-Means | PyTorch | Classification | Text | 0.6002624 | 0.5772669 | 0.5144194 | 0.8683790 | 4.3286845 | 2023-04-30 11:26:21 |
| SVM | PyTorch | Regression | Time Series | 0.7457973 | 0.8615339 | 0.8522896 | NA | 4.4418578 | 2023-05-01 11:26:21 |
| K-Means | Keras | Classification | Image | 0.5321045 | 0.7747981 | NA | 0.9713331 | 1.0636026 | 2023-05-02 11:26:21 |
| K-Means | TensorFlow | Regression | Image | 0.7909857 | 0.6291638 | 0.8588662 | 0.4254534 | 3.7133878 | 2023-05-03 11:26:21 |
| Neural Network | Scikit-learn | Clustering | Image | 0.6344967 | 0.5234124 | 0.8756957 | 0.5591957 | 1.5039458 | 2023-05-04 11:26:21 |
| SVM | Keras | Clustering | Tabular | 0.8987796 | 0.4728319 | 0.9002936 | 0.7609323 | 4.0329375 | 2023-05-05 11:26:21 |
| Neural Network | Keras | Classification | Text | 0.6551810 | 0.7690078 | 0.9416447 | 0.5779359 | 4.9864657 | 2023-05-06 11:26:21 |
| SVM | Scikit-learn | Classification | Image | 0.7276101 | 0.8647803 | 0.6016897 | 0.8286545 | 0.2471274 | 2023-05-07 11:26:21 |
| SVM | PyTorch | Regression | Image | 0.5058103 | 0.7863426 | 0.5232068 | 0.8554032 | 4.4970927 | 2023-05-08 11:26:21 |
| Neural Network | Keras | Regression | Text | 0.5362234 | 0.7181813 | 0.7075391 | 0.4615096 | 3.1508896 | 2023-05-09 11:26:21 |
| Neural Network | PyTorch | Classification | Image | 0.6962468 | 0.4251707 | 0.5598207 | 0.7083127 | 4.8695748 | 2023-05-10 11:26:21 |
| SVM | TensorFlow | Regression | Time Series | 0.7399694 | 0.9810933 | 0.7207519 | 0.7053343 | 2.3785466 | 2023-05-11 11:26:21 |
| Random Forest | PyTorch | Classification | Text | 0.8000103 | 0.8792285 | 0.7939101 | 0.6215685 | 4.2522009 | 2023-05-12 11:26:21 |
| K-Means | TensorFlow | Regression | Text | 0.6458313 | 0.5756932 | 0.7818835 | 0.9597549 | 0.4057309 | 2023-05-13 11:26:21 |
| Neural Network | PyTorch | Classification | Text | 0.8474909 | 0.9879822 | 0.5621870 | 0.8965038 | 1.7428673 | 2023-05-14 11:26:21 |
| K-Means | Keras | Classification | Time Series | 0.9300612 | 0.7611290 | 0.4168021 | 0.8183256 | 0.4283810 | 2023-05-15 11:26:21 |
| Random Forest | Keras | Classification | Text | 0.8899255 | 0.7494536 | 0.6013705 | 0.8285960 | 4.8791814 | 2023-05-16 11:26:21 |
| Random Forest | TensorFlow | Regression | Time Series | 0.5198094 | 0.8488439 | 0.3998159 | 0.6770297 | 4.1031721 | 2023-05-17 11:26:21 |
| Random Forest | Scikit-learn | Regression | Text | 0.7402535 | 0.8870619 | 0.9230679 | 0.9525967 | 4.2774824 | 2023-05-18 11:26:21 |
| Neural Network | TensorFlow | Regression | Tabular | 0.5524651 | 0.7938872 | 0.5421142 | 0.8167573 | 4.6960296 | 2023-05-19 11:26:21 |
| Random Forest | TensorFlow | Classification | Image | 0.6210225 | 0.4768574 | NA | 0.8373886 | 0.5170071 | 2023-05-20 11:26:21 |
| Neural Network | PyTorch | Regression | Tabular | 0.9933313 | 0.6029605 | 0.3178134 | 0.9170145 | NA | 2023-05-21 11:26:21 |
| Random Forest | PyTorch | Regression | Image | 0.5712478 | 0.9568502 | 0.7520757 | 0.5644430 | 0.4480710 | 2023-05-22 11:26:21 |
| K-Means | TensorFlow | Classification | Time Series | 0.7494441 | 0.5347694 | 0.7458316 | 0.8842425 | 1.1328862 | 2023-05-23 11:26:21 |
| K-Means | Keras | Clustering | Tabular | 0.8090779 | 0.6233002 | 0.5384229 | NA | 1.2238923 | 2023-05-24 11:26:21 |
| SVM | PyTorch | Classification | Text | 0.8512325 | 0.6592461 | 0.3501983 | 0.6072052 | 2.3986253 | 2023-05-25 11:26:21 |
| K-Means | Scikit-learn | Regression | Image | 0.7798243 | 0.6636430 | 0.5867402 | 0.6013663 | 1.4159546 | 2023-05-26 11:26:21 |
| SVM | PyTorch | Classification | Image | 0.5048854 | 0.7677637 | 0.5178522 | 0.9871153 | 0.5947927 | 2023-05-27 11:26:21 |
| K-Means | PyTorch | Clustering | Tabular | 0.6632307 | 0.9658455 | 0.7739844 | 0.9139223 | 0.9207063 | 2023-05-28 11:26:21 |
| Neural Network | Scikit-learn | Classification | Time Series | 0.7588558 | 0.5444156 | 0.7240455 | 0.8207019 | 0.8216503 | 2023-05-29 11:26:21 |
| K-Means | TensorFlow | Regression | Tabular | 0.5439332 | 0.4729008 | 0.5552156 | 0.8362341 | 4.8680763 | 2023-05-30 11:26:21 |
| SVM | Scikit-learn | Clustering | Time Series | 0.6753135 | 0.5184823 | 0.4525248 | NA | 3.8205333 | 2023-05-31 11:26:21 |
| SVM | TensorFlow | Regression | Time Series | 0.5166016 | 0.9321549 | 0.9916252 | 0.9682544 | 4.8420312 | 2023-06-01 11:26:21 |
| Random Forest | TensorFlow | Clustering | Image | 0.5392892 | 0.7874865 | 0.6178011 | 0.6977553 | 2.2547284 | 2023-06-02 11:26:21 |
| Neural Network | TensorFlow | Clustering | Tabular | 0.6984616 | 0.5715441 | 0.7817920 | 0.6283106 | 1.4640056 | 2023-06-03 11:26:21 |
| K-Means | Scikit-learn | Classification | Tabular | 0.5663579 | 0.8895682 | 0.3983871 | 0.4978212 | 4.0116367 | 2023-06-04 11:26:21 |
| Random Forest | TensorFlow | Classification | Time Series | 0.7837704 | 0.9168220 | NA | 0.8717234 | 1.6986442 | 2023-06-05 11:26:21 |
| K-Means | Keras | Regression | Tabular | 0.8447325 | 0.9079086 | 0.3192757 | 0.8406664 | 1.5669785 | 2023-06-06 11:26:21 |
| K-Means | Scikit-learn | Classification | Text | 0.9002933 | 0.9513559 | 0.6538186 | 0.6306130 | 1.2392794 | 2023-06-07 11:26:21 |
| Random Forest | Keras | Classification | Text | 0.6000751 | 0.5513446 | 0.9748122 | 0.4151160 | 0.7354270 | 2023-06-08 11:26:21 |
| Random Forest | TensorFlow | Clustering | Tabular | 0.5837413 | 0.8530252 | 0.5689447 | 0.9033984 | 1.3566690 | 2023-06-09 11:26:21 |
| Random Forest | PyTorch | Classification | Tabular | 0.5522839 | 0.6763237 | 0.3272972 | 0.4068508 | 1.8410668 | 2023-06-10 11:26:21 |
| Random Forest | TensorFlow | Clustering | Time Series | 0.8182151 | 0.9051991 | 0.3216691 | 0.8222199 | 3.4025716 | 2023-06-11 11:26:21 |
| Random Forest | Keras | Clustering | Text | 8.5323786 | 0.8370944 | NA | 0.9821543 | 0.4065677 | 2023-06-12 11:26:21 |
| K-Means | Keras | Clustering | Text | 0.5157931 | 0.8658685 | 0.4120175 | 0.6625968 | 1.1314840 | 2023-06-13 11:26:21 |
| Random Forest | Scikit-learn | Regression | Image | 0.9681061 | 0.7936971 | 0.3163465 | 0.5409840 | 4.0642158 | 2023-06-14 11:26:21 |
| Neural Network | PyTorch | Regression | Time Series | 5.2598564 | 0.5064573 | 0.8293495 | 0.8229226 | 0.8199174 | 2023-06-15 11:26:21 |
| SVM | Scikit-learn | Regression | Image | 0.7706482 | 0.7270162 | 0.6209661 | 0.8902769 | 1.7789612 | 2023-06-16 11:26:21 |
| Random Forest | Keras | Clustering | Text | 0.8545303 | 0.9908018 | 0.5024713 | 0.7278582 | 4.3368287 | 2023-06-17 11:26:21 |
| Random Forest | TensorFlow | Regression | Time Series | 0.9354846 | 0.9624328 | NA | 0.9802212 | NA | 2023-06-18 11:26:21 |
| K-Means | PyTorch | Regression | Tabular | 0.8570435 | 0.4259042 | 0.3812973 | 0.4310012 | 0.5054105 | 2023-06-19 11:26:21 |
| Random Forest | TensorFlow | Classification | Time Series | 0.9008640 | 0.4988889 | 0.9691432 | 0.7028774 | 2.4742362 | 2023-06-20 11:26:21 |
| Random Forest | TensorFlow | Regression | Tabular | 0.6697251 | 0.4790373 | 0.5197767 | 0.8310724 | 1.5818556 | 2023-06-21 11:26:21 |
| Random Forest | PyTorch | Regression | Tabular | NA | 0.8355879 | 0.9218826 | 0.9175843 | 2.8607010 | 2023-06-22 11:26:21 |
| K-Means | Scikit-learn | Clustering | Time Series | 0.5400574 | 0.8906712 | 0.7220600 | 0.5075534 | 4.0386440 | 2023-06-23 11:26:21 |
| Random Forest | TensorFlow | Clustering | Tabular | 0.9474083 | 0.5281068 | 0.8786952 | 0.8800021 | 0.7720276 | 2023-06-24 11:26:21 |
| SVM | Keras | Clustering | Image | 0.7737962 | 0.7035116 | 0.9888092 | 0.7316242 | 2.9454255 | 2023-06-25 11:26:21 |
| K-Means | TensorFlow | Clustering | Text | 0.9086489 | 0.9044218 | 0.5018838 | 0.6379322 | 2.5769929 | 2023-06-26 11:26:21 |
| SVM | PyTorch | Clustering | Tabular | 0.7261591 | 0.8396809 | 0.9727948 | 0.4790290 | 0.8059861 | 2023-06-27 11:26:21 |
| K-Means | PyTorch | Clustering | Image | 0.8217888 | 0.7253423 | 5.7263733 | 0.9191775 | 3.1575926 | 2023-06-28 11:26:21 |
| Random Forest | PyTorch | Regression | Tabular | 0.7632013 | 0.7542086 | 0.5698583 | 0.4943639 | 1.4408380 | 2023-06-29 11:26:21 |
| SVM | Scikit-learn | Clustering | Text | 0.8657948 | 0.7050163 | 0.5382710 | 5.8587272 | NA | 2023-06-30 11:26:21 |
| K-Means | TensorFlow | Clustering | Image | NA | 0.5785291 | 0.6789853 | 0.5740273 | 0.5031344 | 2023-07-01 11:26:21 |
| Neural Network | Scikit-learn | Classification | Text | 0.5301760 | 0.7390132 | 0.4079015 | NA | 2.3519619 | 2023-07-02 11:26:21 |
| Random Forest | Scikit-learn | Regression | Text | 0.6235516 | 0.8133312 | 0.6875980 | 0.8036218 | 1.6016710 | 2023-07-03 11:26:21 |
| K-Means | PyTorch | Regression | Image | 0.5797723 | 0.9239937 | 0.6791934 | 0.8780088 | 4.1296679 | 2023-07-04 11:26:21 |
| Neural Network | PyTorch | Regression | Image | 0.9358918 | 0.7817748 | 0.8333313 | 0.5502807 | 0.3791958 | 2023-07-05 11:26:21 |
| K-Means | Scikit-learn | Clustering | Image | 0.6096070 | 0.8566729 | 0.8835550 | 0.7749245 | 2.1511756 | 2023-07-06 11:26:21 |
| Neural Network | TensorFlow | Clustering | Time Series | 0.9879326 | 0.4960430 | 0.6083089 | 0.7430476 | 2.3463140 | 2023-07-07 11:26:21 |
| Random Forest | Keras | Clustering | Image | 0.6684479 | 0.6769345 | 0.5116333 | 0.8996982 | 3.6525298 | 2023-07-08 11:26:21 |
| SVM | Scikit-learn | Classification | Image | 0.5910590 | 4.0559897 | 0.4815344 | 0.9436522 | 2.9140091 | 2023-07-09 11:26:21 |
| Neural Network | TensorFlow | Clustering | Image | 0.8948493 | 0.5480073 | 0.4362367 | 0.4072941 | 3.3693405 | 2023-07-10 11:26:21 |
| K-Means | PyTorch | Classification | Image | 0.8293539 | NA | NA | 0.8044120 | 3.9075415 | 2023-07-11 11:26:21 |
| Random Forest | PyTorch | Regression | Tabular | 0.7490979 | NA | 0.5397136 | 0.4311015 | 4.3247946 | 2023-07-12 11:26:21 |
| Neural Network | TensorFlow | Clustering | Time Series | 0.7776818 | 0.4595069 | 4.8917338 | NA | 1.6379899 | 2023-07-13 11:26:21 |
| K-Means | Keras | Classification | Text | 0.8596009 | 0.6408966 | 0.9764922 | 0.5725796 | 2.7363113 | 2023-07-14 11:26:21 |
| K-Means | PyTorch | Classification | Image | NA | 0.8800426 | 0.6903962 | 0.5840660 | 4.2165296 | 2023-07-15 11:26:21 |
| K-Means | PyTorch | Clustering | Tabular | 0.9981670 | 0.5224214 | 0.5430939 | 0.6117751 | 4.9483105 | 2023-07-16 11:26:21 |
| Neural Network | PyTorch | Regression | Tabular | 0.9873966 | 0.7330510 | 0.7063273 | 0.7727755 | 44.5864462 | 2023-07-17 11:26:21 |
| Neural Network | TensorFlow | Regression | Tabular | 0.8251628 | 0.8398428 | 0.3974377 | 0.6004300 | 1.9201896 | 2023-07-18 11:26:21 |
| Neural Network | Scikit-learn | Regression | Text | 0.5997712 | 0.7695913 | 0.6108306 | 0.8396194 | 1.0563159 | 2023-07-19 11:26:21 |
| SVM | PyTorch | Classification | Image | 0.8401141 | 0.5128148 | 0.7383640 | 0.6427164 | 2.4980234 | 2023-07-20 11:26:21 |
| Neural Network | Scikit-learn | Classification | Time Series | 0.5360992 | 0.6132307 | 0.6422285 | 0.4410119 | 3.7340431 | 2023-07-21 11:26:21 |
| Neural Network | Keras | Classification | Time Series | 0.5153263 | 0.8702751 | 0.5812452 | 0.8702559 | 2.5135884 | 2023-07-22 11:26:21 |
| Neural Network | PyTorch | Classification | Tabular | NA | 0.7325359 | 0.9956939 | 0.5714550 | 2.4675862 | 2023-07-23 11:26:21 |
| SVM | PyTorch | Regression | Text | 0.7313115 | 0.4031378 | 0.9162203 | 0.6596601 | 4.2073291 | 2023-07-24 11:26:21 |
| Neural Network | Keras | Clustering | Text | 0.9341363 | 0.8565945 | 0.7363842 | 0.8112663 | 1.8708785 | 2023-07-25 11:26:21 |
| K-Means | PyTorch | Classification | Text | 0.8635845 | 0.4211868 | 0.6985642 | 0.5994737 | 4.3129939 | 2023-07-26 11:26:21 |
| Neural Network | Scikit-learn | Classification | Time Series | 0.8713533 | 0.8474403 | 0.7344623 | 0.4339514 | 20.9334352 | 2023-07-27 11:26:21 |
| K-Means | TensorFlow | Regression | Tabular | 7.1274667 | 0.5214883 | 0.4409185 | 0.6243526 | 1.7083422 | 2023-07-28 11:26:21 |
| K-Means | Scikit-learn | Clustering | Image | NA | 0.9748441 | 0.5765964 | 0.9666691 | 2.3245506 | 2023-07-29 11:26:21 |
| K-Means | TensorFlow | Clustering | Time Series | 0.6855194 | 6.2076445 | 0.3276217 | 0.7850406 | 3.8359901 | 2023-07-30 11:26:21 |
| SVM | TensorFlow | Regression | Tabular | NA | 0.5961590 | 0.6328822 | 0.8028875 | 0.7174099 | 2023-07-31 11:26:21 |
| SVM | Scikit-learn | Regression | Tabular | 5.2005460 | 0.4893328 | 0.6801172 | 0.7793693 | 1.0624542 | 2023-08-01 11:26:21 |
| SVM | Scikit-learn | Clustering | Image | NA | 0.5833625 | 0.4594248 | 0.5193953 | 4.7620796 | 2023-08-02 11:26:21 |
| Neural Network | Scikit-learn | Classification | Image | 0.7893377 | 0.9259905 | 0.9748202 | 0.6510003 | 0.9599090 | 2023-08-03 11:26:21 |
| K-Means | Scikit-learn | Clustering | Image | 0.7193077 | 0.9978006 | 9.3661823 | 0.8505639 | 2.8818639 | 2023-08-04 11:26:21 |
| SVM | Keras | Regression | Text | 0.8626288 | 0.6209857 | 0.8055003 | 0.4608237 | 2.9386409 | 2023-08-05 11:26:21 |
| SVM | PyTorch | Classification | Image | 0.7433345 | 0.6691664 | 0.6733706 | 0.5667117 | 2.4991599 | 2023-08-06 11:26:21 |
| Neural Network | TensorFlow | Classification | Tabular | 0.9367116 | 0.8332426 | 0.9089784 | 0.5657915 | 3.2592517 | 2023-08-07 11:26:21 |
| SVM | Scikit-learn | Regression | Image | 0.9503509 | 0.9317175 | 0.3914566 | 0.6592114 | 1.2261510 | 2023-08-08 11:26:21 |
| Neural Network | Scikit-learn | Regression | Tabular | 0.7108605 | 0.7558266 | 0.8533569 | 0.9882212 | 2.8080451 | 2023-08-09 11:26:21 |
| Random Forest | Scikit-learn | Regression | Time Series | 0.6384139 | 0.6349154 | 0.3873746 | 0.4405015 | 1.9236490 | 2023-08-10 11:26:21 |
| SVM | Keras | Clustering | Text | 0.7961752 | 0.6475731 | 0.8559475 | 0.7112206 | 3.3421696 | 2023-08-11 11:26:21 |
| Random Forest | Scikit-learn | Clustering | Time Series | 0.9561817 | 0.8173709 | 0.4930373 | 0.5076188 | 0.7919954 | 2023-08-12 11:26:21 |
| Neural Network | Scikit-learn | Classification | Time Series | NA | 0.4019310 | 0.9139634 | 0.9824059 | 28.9729934 | 2023-08-13 11:26:21 |
| K-Means | Scikit-learn | Regression | Tabular | 0.8114833 | 0.7717536 | 0.9608295 | 0.4679821 | 1.0078247 | 2023-08-14 11:26:21 |
| SVM | PyTorch | Classification | Time Series | 0.8157801 | 0.6132958 | 0.4041572 | 0.6421606 | NA | 2023-08-15 11:26:21 |
| Neural Network | Keras | Classification | Tabular | 0.8665565 | 0.8765184 | 0.6238729 | 0.8427310 | 1.1716780 | 2023-08-16 11:26:21 |
| K-Means | Scikit-learn | Classification | Image | NA | 0.4557944 | 0.9866912 | 0.8227327 | 0.9959051 | 2023-08-17 11:26:21 |
| K-Means | TensorFlow | Classification | Image | NA | 0.7529214 | 0.6383852 | 0.6536372 | 4.1459837 | 2023-08-18 11:26:21 |
| Random Forest | TensorFlow | Regression | Tabular | 0.9545163 | 0.6885837 | 0.9044833 | 0.6079145 | 1.4999671 | 2023-08-19 11:26:21 |
| Neural Network | TensorFlow | Classification | Image | 0.5898416 | 0.7853953 | 0.7121121 | 0.6385674 | 4.6429065 | 2023-08-20 11:26:21 |
| K-Means | Keras | Regression | Text | 0.6187717 | 0.4389122 | 0.5627309 | 0.5585658 | 4.8526400 | 2023-08-21 11:26:21 |
| SVM | Keras | Regression | Time Series | 0.9856975 | NA | 0.5000485 | 0.5231998 | 2.8991763 | 2023-08-22 11:26:21 |
| SVM | TensorFlow | Clustering | Text | 0.5904885 | 0.7368908 | 0.4422562 | 0.6898238 | 0.8007055 | 2023-08-23 11:26:21 |
| Random Forest | Scikit-learn | Regression | Time Series | 0.9271925 | 0.7363961 | 0.8332587 | 0.5611203 | 1.9352864 | 2023-08-24 11:26:21 |
| K-Means | Keras | Clustering | Image | 0.7461389 | 0.7620926 | 0.5705784 | 0.5724770 | 4.0088881 | 2023-08-25 11:26:21 |
| Neural Network | TensorFlow | Regression | Text | 0.6236155 | 0.8058808 | 0.6578928 | 0.7940536 | 1.9002146 | 2023-08-26 11:26:21 |
| SVM | TensorFlow | Regression | Image | 0.9353750 | 0.8829934 | 0.6446278 | 0.9811224 | 0.5263844 | 2023-08-27 11:26:21 |
| K-Means | Scikit-learn | Regression | Time Series | 0.7226526 | 0.5618924 | 0.7040953 | 0.7621823 | 2.8282461 | 2023-08-28 11:26:21 |
| K-Means | PyTorch | Clustering | Tabular | 0.7574087 | 0.8950296 | 0.9059040 | 0.4461877 | 4.2410922 | 2023-08-29 11:26:21 |
| Random Forest | Keras | Clustering | Tabular | 0.6796167 | 0.6989534 | 0.9865175 | 0.4453502 | NA | 2023-08-30 11:26:21 |
| SVM | Scikit-learn | Classification | Text | 0.7964754 | NA | 0.5853089 | 0.9708539 | 0.9581034 | 2023-08-31 11:26:21 |
| SVM | TensorFlow | Clustering | Image | 0.5817619 | 0.4351306 | 0.8792632 | 0.5783745 | NA | 2023-09-01 11:26:21 |
| Neural Network | TensorFlow | Clustering | Image | 0.6955408 | 0.6005430 | 0.8351695 | 0.4552402 | 1.1804709 | 2023-09-02 11:26:21 |
| SVM | Scikit-learn | Clustering | Text | 0.9847062 | 0.8709382 | NA | 0.7594268 | 1.1692169 | 2023-09-03 11:26:21 |
| Neural Network | Keras | Clustering | Tabular | NA | 0.8246086 | 0.9692330 | 0.7741893 | 4.3829517 | 2023-09-04 11:26:21 |
| SVM | PyTorch | Classification | Time Series | 0.8283683 | 0.8731690 | 0.4403322 | 0.7891029 | 1.3233779 | 2023-09-05 11:26:21 |
| Random Forest | PyTorch | Clustering | Text | 0.6625950 | 0.7103614 | 0.3764849 | 0.5604412 | 1.3899120 | 2023-09-06 11:26:21 |
| SVM | TensorFlow | Regression | Time Series | 0.8867366 | 0.6641194 | 0.8977734 | 0.4090664 | 0.1032016 | 2023-09-07 11:26:21 |
| Neural Network | Keras | Regression | Tabular | 0.5654368 | 0.4884715 | 0.6074049 | 0.9790092 | 4.3662783 | 2023-09-08 11:26:21 |
| Neural Network | PyTorch | Clustering | Image | 0.9849105 | 0.5969157 | 0.8928782 | 0.5505358 | 3.9837146 | 2023-09-09 11:26:21 |
| Random Forest | Keras | Clustering | Tabular | NA | 0.6604116 | 0.9251631 | 0.8056158 | 3.1739118 | 2023-09-10 11:26:21 |
| SVM | Keras | Regression | Text | 0.6180252 | 0.4531603 | 0.3437203 | 0.8239779 | 3.7763022 | 2023-09-11 11:26:21 |
| SVM | TensorFlow | Regression | Image | NA | 0.5323672 | 0.9184253 | 0.7660045 | 0.8450380 | 2023-09-12 11:26:21 |
| Random Forest | PyTorch | Classification | Text | 0.5848790 | 0.7589352 | 0.6138233 | 0.5877444 | 2.3457856 | 2023-09-13 11:26:21 |
| SVM | Scikit-learn | Regression | Text | 0.7598870 | 0.8413979 | NA | 0.5626578 | 1.8209750 | 2023-09-14 11:26:21 |
| SVM | TensorFlow | Regression | Tabular | 0.6685016 | 0.9990085 | 0.7386148 | 0.7586010 | 0.5595050 | 2023-09-15 11:26:21 |
| Neural Network | PyTorch | Clustering | Text | 0.9144417 | 0.9598680 | 0.9484678 | NA | 2.4820394 | 2023-09-16 11:26:21 |
| SVM | PyTorch | Regression | Tabular | NA | 0.7855391 | 0.3133813 | 0.9680402 | 4.6116243 | 2023-09-17 11:26:21 |
| SVM | PyTorch | Classification | Image | 0.6243571 | 0.6527488 | 0.6337904 | 0.4635435 | 0.2962897 | 2023-09-18 11:26:21 |
| Random Forest | PyTorch | Regression | Tabular | 0.8085725 | 0.7817064 | 0.7814054 | 0.4928972 | 1.5281585 | 2023-09-19 11:26:21 |
| Random Forest | PyTorch | Clustering | Image | 0.8533886 | 0.8713910 | 0.8058949 | 0.9668418 | 1.1169506 | 2023-09-20 11:26:21 |
| K-Means | Keras | Clustering | Tabular | 0.5835210 | 0.4710017 | 0.7847727 | 0.8419211 | 1.2669186 | 2023-09-21 11:26:21 |
| Neural Network | TensorFlow | Regression | Time Series | 0.5838096 | 0.6459429 | 0.3941046 | 0.9297963 | 4.5513293 | 2023-09-22 11:26:21 |
| SVM | Keras | Clustering | Time Series | 0.5183357 | 0.9038814 | 0.5095769 | 0.5215796 | 2.3935384 | 2023-09-23 11:26:21 |
| SVM | Scikit-learn | Classification | Text | 0.8682010 | 0.6302998 | 0.5511009 | 0.7525515 | 2.3848671 | 2023-09-24 11:26:21 |
| K-Means | PyTorch | Classification | Tabular | 0.8319023 | 0.7431234 | 0.8631060 | 0.8206838 | 3.8268206 | 2023-09-25 11:26:21 |
| SVM | TensorFlow | Regression | Tabular | 0.7373154 | 0.7526616 | 0.4951319 | 0.8080671 | 0.8570118 | 2023-09-26 11:26:21 |
| Neural Network | PyTorch | Regression | Image | 0.9220852 | 0.5106858 | 0.4474935 | 0.6448910 | 2.4876002 | 2023-09-27 11:26:21 |
| K-Means | TensorFlow | Regression | Text | 0.9028351 | 0.6173413 | 0.9702136 | 0.4092369 | 2.2069275 | 2023-09-28 11:26:21 |
| Neural Network | Keras | Clustering | Tabular | 0.7926772 | 0.6007068 | 0.3062043 | 0.7497556 | 3.0248624 | 2023-09-29 11:26:21 |
| K-Means | TensorFlow | Classification | Text | 0.9341356 | 0.4157180 | 0.9984746 | 0.5518609 | 4.9978327 | 2023-09-30 11:26:21 |
| K-Means | Scikit-learn | Classification | Time Series | 0.6029206 | 4.1451506 | 7.7377491 | 0.6701525 | 3.8702996 | 2023-10-01 11:26:21 |
| Random Forest | Scikit-learn | Clustering | Tabular | 0.5559598 | 0.8990182 | NA | 0.9745486 | 2.0495419 | 2023-10-02 11:26:21 |
| Neural Network | TensorFlow | Classification | Tabular | 0.6348748 | 0.5638425 | 0.5062336 | 0.6394212 | 4.1550100 | 2023-10-03 11:26:21 |
| SVM | TensorFlow | Regression | Text | 0.5285434 | 0.7108473 | 0.3100207 | 0.9038810 | 0.9364710 | 2023-10-04 11:26:21 |
| SVM | TensorFlow | Regression | Tabular | 0.7655848 | 0.5792353 | 0.8165087 | 5.1312436 | 0.2492721 | 2023-10-05 11:26:21 |
| Neural Network | TensorFlow | Regression | Text | 0.9683028 | 0.9644075 | 0.8839012 | 0.8034763 | 1.1017970 | 2023-10-06 11:26:21 |
| SVM | Scikit-learn | Classification | Tabular | 0.5196718 | 0.5555781 | 0.8183333 | 0.9862042 | 1.7680166 | 2023-10-07 11:26:21 |
| SVM | PyTorch | Regression | Image | 0.5610550 | 0.6577941 | 0.3999952 | 0.4611359 | NA | 2023-10-08 11:26:21 |
| Neural Network | TensorFlow | Clustering | Text | 0.7260995 | 0.9236382 | 0.8273995 | 0.4049920 | 3.1141328 | 2023-10-09 11:26:21 |
| K-Means | TensorFlow | Clustering | Tabular | 0.9669375 | 0.9051601 | 0.8382459 | 0.6601497 | 4.5619680 | 2023-10-10 11:26:21 |
| Neural Network | Scikit-learn | Classification | Time Series | 0.6580781 | 0.5116609 | 0.7609784 | 0.4555753 | 2.5982846 | 2023-10-11 11:26:21 |
| K-Means | Scikit-learn | Clustering | Tabular | 0.7536174 | 0.8815860 | 0.8362812 | 0.8490306 | 2.5562507 | 2023-10-12 11:26:21 |
| SVM | Keras | Clustering | Time Series | 0.5207864 | 0.6749121 | 0.8921450 | 0.9487292 | 0.3461907 | 2023-10-13 11:26:21 |
| SVM | TensorFlow | Classification | Time Series | NA | 0.6897813 | 0.7295229 | 0.6604126 | 0.2710666 | 2023-10-14 11:26:21 |
| SVM | Keras | Regression | Image | 0.9933151 | 0.4800880 | 0.3620233 | 0.5552270 | 2.8006838 | 2023-10-15 11:26:21 |
| Random Forest | Scikit-learn | Regression | Text | 0.9825593 | 0.4483609 | 0.6413395 | 0.6606420 | 2.2470752 | 2023-10-16 11:26:21 |
| K-Means | Scikit-learn | Regression | Tabular | NA | 0.8367636 | 0.3543545 | 0.8340687 | 4.2119839 | 2023-10-17 11:26:21 |
| Random Forest | PyTorch | Classification | Image | 0.9759059 | 0.6978767 | 0.5852801 | 0.4054325 | 0.8873300 | 2023-10-18 11:26:21 |
| Random Forest | TensorFlow | Clustering | Tabular | 0.8195600 | 0.6621104 | NA | 0.7536724 | 0.2223611 | 2023-10-19 11:26:21 |
| Neural Network | Keras | Regression | Time Series | 0.9339591 | 0.8377049 | 0.3462069 | 0.7679750 | 2.3002900 | 2023-10-20 11:26:21 |
| Random Forest | Scikit-learn | Regression | Text | 0.7273699 | 0.8593077 | 0.5441744 | 0.7826129 | 1.2636449 | 2023-10-21 11:26:21 |
| Neural Network | Scikit-learn | Classification | Tabular | 0.7577980 | 0.4953449 | 0.3776987 | 0.5452132 | 0.3431104 | 2023-10-22 11:26:21 |
| Neural Network | Keras | Regression | Tabular | 0.7444233 | 0.7661351 | 0.8657646 | 0.8284316 | 3.6505316 | 2023-10-23 11:26:21 |
| Random Forest | PyTorch | Classification | Time Series | 0.8334321 | 0.4812124 | 0.9633816 | NA | 0.6468057 | 2023-10-24 11:26:21 |
| K-Means | Scikit-learn | Clustering | Tabular | 0.5698256 | 0.8508251 | 0.3506215 | 0.5195622 | 3.0807656 | 2023-10-25 11:26:21 |
| K-Means | TensorFlow | Classification | Tabular | 0.5149868 | 0.7941731 | 0.9685806 | 0.9264820 | 1.4771438 | 2023-10-26 11:26:21 |
| K-Means | Scikit-learn | Classification | Time Series | 0.6539650 | 0.9739688 | 0.6658036 | 0.8432339 | 0.9501306 | 2023-10-27 11:26:21 |
| K-Means | TensorFlow | Classification | Image | 0.8523404 | 0.4413748 | 0.5096960 | 0.4082473 | 1.9607825 | 2023-10-28 11:26:21 |
| K-Means | Keras | Classification | Time Series | 0.6009267 | NA | 0.3538035 | 0.5490258 | 4.0270843 | 2023-10-29 11:26:21 |
| Random Forest | TensorFlow | Clustering | Image | 0.8367162 | 0.5693122 | 0.6504370 | 0.5286439 | 2.0212585 | 2023-10-30 11:26:21 |
| Random Forest | Keras | Clustering | Text | 0.9849560 | 0.5570234 | 0.8561609 | 0.5624838 | 3.7787713 | 2023-10-31 11:26:21 |
| SVM | TensorFlow | Regression | Image | NA | 0.5481873 | 0.7949605 | 0.5485359 | 0.7148829 | 2023-11-01 11:26:21 |
| K-Means | Keras | Clustering | Image | 0.8363011 | 0.9437527 | 0.3351582 | 0.4375158 | 3.8865800 | 2023-11-02 11:26:21 |
| Random Forest | TensorFlow | Clustering | Text | 0.7218751 | 0.5497277 | 0.3510313 | 0.6753643 | 1.2609733 | 2023-11-03 11:26:21 |
| SVM | PyTorch | Regression | Image | 0.9340711 | 0.5631698 | 0.5820113 | 0.8396401 | 3.4192263 | 2023-11-04 11:26:21 |
| K-Means | TensorFlow | Clustering | Time Series | 0.5885749 | 0.8556390 | 0.5067033 | 0.7640390 | 2.8723296 | 2023-11-05 11:26:21 |
| Neural Network | TensorFlow | Classification | Image | 0.8463130 | 0.6698439 | 0.4626690 | 0.8037230 | 4.6528091 | 2023-11-06 11:26:21 |
| SVM | PyTorch | Classification | Text | NA | 0.8660263 | 0.4967031 | 0.4486895 | 1.9978803 | 2023-11-07 11:26:21 |
| Random Forest | Scikit-learn | Regression | Time Series | 0.9723071 | 0.4392197 | 0.8624379 | 0.9708944 | 0.4242094 | 2023-11-08 11:26:21 |
| Neural Network | Scikit-learn | Regression | Text | 0.8416240 | 0.6925427 | 0.9504596 | 0.9030951 | 0.1938619 | 2023-11-09 11:26:21 |
| Neural Network | TensorFlow | Regression | Text | 0.7485874 | 0.4201682 | 0.5835719 | 0.8830542 | 4.1516069 | 2023-11-10 11:26:21 |
| Neural Network | PyTorch | Classification | Tabular | 0.8089236 | 0.4375919 | 0.9342777 | 0.8937903 | 2.6712046 | 2023-11-11 11:26:21 |
| SVM | TensorFlow | Clustering | Tabular | 0.9344525 | 0.9438625 | 0.5250470 | 0.9596263 | 3.8986959 | 2023-11-12 11:26:21 |
| Random Forest | Keras | Classification | Text | 0.7853049 | 0.4835472 | 0.6335059 | 0.7265524 | 1.2486854 | 2023-11-13 11:26:21 |
| Neural Network | Keras | Regression | Text | 0.5151935 | 0.7194524 | 0.4582203 | 0.5201692 | 1.7909104 | 2023-11-14 11:26:21 |
| K-Means | TensorFlow | Clustering | Text | 0.9654743 | NA | 0.7483332 | 0.7700702 | 0.2475090 | 2023-11-15 11:26:21 |
| Neural Network | Scikit-learn | Clustering | Tabular | 0.8447634 | 0.6084060 | 0.9852868 | 0.8457289 | 4.8113124 | 2023-11-16 11:26:21 |
| Neural Network | Scikit-learn | Classification | Tabular | 0.8382567 | 0.9399000 | 0.7224452 | 0.8427504 | 3.3725527 | 2023-11-17 11:26:21 |
| SVM | TensorFlow | Regression | Image | 0.6078376 | 0.4130940 | 0.5504699 | 0.7128694 | 4.6727049 | 2023-11-18 11:26:21 |
| SVM | TensorFlow | Classification | Image | 8.2944274 | 0.7982738 | 0.7534722 | 0.4410752 | 1.4009324 | 2023-11-19 11:26:21 |
| Random Forest | Keras | Clustering | Text | 0.6969322 | 0.9780367 | 0.3860445 | 0.6226678 | 3.0961717 | 2023-11-20 11:26:21 |
| K-Means | Scikit-learn | Classification | Time Series | 0.8256165 | 0.7361009 | 0.9220614 | 0.9524600 | NA | 2023-11-21 11:26:21 |
| SVM | TensorFlow | Classification | Time Series | 0.5532965 | 0.9620935 | 0.6521588 | 0.7506693 | 1.6559935 | 2023-11-22 11:26:21 |
| Neural Network | Keras | Regression | Tabular | 0.8289227 | 0.4313547 | 0.6145448 | 0.7229992 | 4.2557353 | 2023-11-23 11:26:21 |
| Random Forest | Scikit-learn | Regression | Tabular | 0.9997069 | 0.6512760 | 0.7101054 | 0.5613121 | 4.7410912 | 2023-11-24 11:26:21 |
| Neural Network | PyTorch | Clustering | Tabular | 0.5241060 | 0.5560947 | 0.7373487 | 0.6210694 | 44.3579008 | 2023-11-25 11:26:21 |
| Neural Network | Keras | Classification | Text | 0.9885871 | 0.8384926 | 0.3502431 | 0.9372077 | 3.7214282 | 2023-11-26 11:26:21 |
| SVM | Scikit-learn | Classification | Time Series | 0.7034540 | 0.9887783 | 0.7778321 | 0.7998778 | 1.4595769 | 2023-11-27 11:26:21 |
| Random Forest | Scikit-learn | Classification | Image | 0.9353767 | 0.5539180 | 0.4693522 | 0.8724322 | 1.4799186 | 2023-11-28 11:26:21 |
| K-Means | Keras | Clustering | Text | 0.8911927 | 0.7925048 | 0.7997668 | 0.6726073 | 4.8204656 | 2023-11-29 11:26:21 |
| K-Means | PyTorch | Clustering | Image | 0.7835081 | 0.5188586 | 0.8757744 | 0.7781483 | 0.1503940 | 2023-11-30 11:26:21 |
| SVM | Keras | Regression | Image | 0.8692246 | 0.7391982 | 0.8627710 | 0.5490302 | 3.6086449 | 2023-12-01 11:26:21 |
| SVM | Scikit-learn | Regression | Text | 0.9392578 | 0.6783595 | NA | 0.8232765 | 3.5606062 | 2023-12-02 11:26:21 |
| Random Forest | TensorFlow | Regression | Image | 0.7020702 | 0.9832032 | 0.6641189 | 0.6565608 | 3.1511788 | 2023-12-03 11:26:21 |
| K-Means | TensorFlow | Classification | Time Series | 0.6635166 | 0.7651164 | 0.4000132 | 0.6655273 | 4.9515333 | 2023-12-04 11:26:21 |
| K-Means | Keras | Classification | Image | 0.8337967 | 0.6097038 | 0.8427423 | 0.7895934 | 1.6282092 | 2023-12-05 11:26:21 |
| K-Means | Scikit-learn | Regression | Time Series | 0.9039230 | 0.4684575 | 0.4899866 | 0.9617684 | 1.7658621 | 2023-12-06 11:26:21 |
| Neural Network | TensorFlow | Classification | Time Series | 0.8811426 | 0.4907481 | 0.6476868 | 0.4384038 | 0.4868031 | 2023-12-07 11:26:21 |
| K-Means | Scikit-learn | Regression | Time Series | 0.8989068 | 0.5351902 | 0.4989919 | 0.8948459 | 2.2697109 | 2023-12-08 11:26:21 |
| Neural Network | Keras | Clustering | Tabular | 0.7177917 | 0.5505800 | 0.3936799 | 0.5754299 | 13.7913778 | 2023-12-09 11:26:21 |
| Random Forest | TensorFlow | Regression | Image | 0.9089171 | 0.9103696 | 0.7406904 | 0.6663517 | 1.7825948 | 2023-12-10 11:26:21 |
| Neural Network | Scikit-learn | Clustering | Text | 0.5601045 | 0.7367337 | 0.3380324 | 0.4131480 | 4.1894018 | 2023-12-11 11:26:21 |
| Random Forest | TensorFlow | Classification | Text | 0.7722445 | 0.7140345 | 0.8240517 | 0.5806276 | 46.8387412 | 2023-12-12 11:26:21 |
| K-Means | Keras | Regression | Image | NA | 0.4688613 | 0.5223108 | 0.7015787 | 1.0100921 | 2023-12-13 11:26:21 |
| K-Means | Scikit-learn | Classification | Tabular | 0.6622929 | 0.9160838 | 0.3000943 | 0.4337056 | 1.9252938 | 2023-12-14 11:26:21 |
| Random Forest | TensorFlow | Clustering | Tabular | 0.6832308 | 0.8336886 | 0.6577904 | 0.6946574 | 4.6502898 | 2023-12-15 11:26:21 |
| SVM | Keras | Clustering | Time Series | 0.6980863 | 0.4406010 | NA | 0.9562664 | 0.4028615 | 2023-12-16 11:26:21 |
| Random Forest | TensorFlow | Clustering | Image | NA | 0.8247011 | 0.4933187 | 0.4632359 | 0.5525666 | 2023-12-17 11:26:21 |
| SVM | TensorFlow | Classification | Image | 0.6942791 | 0.7261229 | 0.7948835 | 0.8586644 | 0.8976758 | 2023-12-18 11:26:21 |
| Neural Network | PyTorch | Classification | Text | 0.7243468 | 0.4490352 | 3.4388274 | 0.6458026 | 3.0165429 | 2023-12-19 11:26:21 |
| Neural Network | PyTorch | Classification | Image | NA | 0.6749804 | 0.8875369 | 0.7931042 | 0.8373141 | 2023-12-20 11:26:21 |
| Neural Network | Keras | Classification | Tabular | 0.6866259 | NA | 0.3026739 | 0.5561420 | 4.8435743 | 2023-12-21 11:26:21 |
| K-Means | PyTorch | Clustering | Image | 0.6136348 | 0.4994647 | 0.4727767 | 0.4956954 | 2.2889012 | 2023-12-22 11:26:21 |
| Neural Network | Keras | Clustering | Text | 0.5365980 | 9.6741889 | 0.8186328 | 0.4962776 | 2.5574380 | 2023-12-23 11:26:21 |
| SVM | PyTorch | Regression | Time Series | 0.8017243 | 0.9099852 | 0.5213891 | 0.4422952 | 1.3086272 | 2023-12-24 11:26:21 |
| Neural Network | TensorFlow | Regression | Text | 0.8341064 | 0.8014134 | 0.3713247 | 0.5113880 | 2.4077052 | 2023-12-25 11:26:21 |
| Random Forest | Keras | Classification | Text | 0.8097452 | NA | 0.5521637 | 0.7985316 | 3.3433768 | 2023-12-26 11:26:21 |
| Random Forest | Keras | Clustering | Time Series | 0.7317470 | 0.6470593 | 0.4892753 | 0.9290144 | 3.7807680 | 2023-12-27 11:26:21 |
| K-Means | TensorFlow | Clustering | Text | 0.6898929 | 0.7905841 | 0.8898983 | 0.8884754 | 3.7939536 | 2023-12-28 11:26:21 |
| Random Forest | Keras | Clustering | Text | 0.9316668 | 0.7272591 | 0.5193435 | NA | NA | 2023-12-29 11:26:21 |
| SVM | Keras | Regression | Image | 0.7595409 | 0.4373639 | 0.8522527 | 0.4662591 | 4.5313629 | 2023-12-30 11:26:21 |
| Neural Network | PyTorch | Regression | Image | 0.7395909 | 0.7075016 | 0.9243105 | 0.5735125 | NA | 2023-12-31 11:26:21 |
| K-Means | Keras | Clustering | Time Series | 0.5128210 | 0.8838422 | 0.6036722 | 0.5858841 | 3.8095358 | 2024-01-01 11:26:21 |
| Neural Network | Scikit-learn | Clustering | Image | 0.6706239 | 0.6755439 | 0.9369602 | 5.4997417 | 0.3724671 | 2024-01-02 11:26:21 |
| Neural Network | TensorFlow | Clustering | Image | NA | 0.4311739 | 0.5641226 | 0.7090034 | 0.1337020 | 2024-01-03 11:26:21 |
| SVM | PyTorch | Regression | Text | 0.6994114 | 0.8717669 | 0.9748549 | 0.7213323 | 1.1409917 | 2024-01-04 11:26:21 |
| Random Forest | PyTorch | Clustering | Tabular | 7.9008618 | 0.5208183 | 0.3625027 | 0.6141316 | 3.3512656 | 2024-01-05 11:26:21 |
| Random Forest | Scikit-learn | Clustering | Image | 0.7668013 | 0.5551725 | 0.7809135 | 0.6122735 | 2.1148677 | 2024-01-06 11:26:21 |
| Neural Network | TensorFlow | Classification | Tabular | 0.8039525 | 0.4988238 | 0.6456698 | 0.8971334 | 2.0717907 | 2024-01-07 11:26:21 |
| K-Means | TensorFlow | Classification | Image | 0.8824416 | 0.5981290 | 0.5713542 | 0.8735757 | 4.4344758 | 2024-01-08 11:26:21 |
| Random Forest | PyTorch | Regression | Image | 0.9064929 | 0.8540509 | 0.7428983 | 0.5846775 | 4.4882580 | 2024-01-09 11:26:21 |
| K-Means | Keras | Clustering | Time Series | 0.8590615 | 0.7116315 | 0.7927000 | 0.9482731 | 4.5549588 | 2024-01-10 11:26:21 |
| Random Forest | PyTorch | Clustering | Time Series | 0.9777618 | NA | 0.3030543 | 0.9716890 | 1.6380026 | 2024-01-11 11:26:21 |
| K-Means | TensorFlow | Classification | Time Series | 0.5091163 | 0.9266980 | 0.4168672 | 0.5960455 | 3.4861735 | 2024-01-12 11:26:21 |
| SVM | Scikit-learn | Regression | Tabular | 5.9788899 | 0.9277491 | 0.7991322 | 0.6126550 | 1.4310026 | 2024-01-13 11:26:21 |
| K-Means | PyTorch | Classification | Text | 0.5037814 | 0.9223471 | 0.7664698 | 0.7033805 | 1.0339882 | 2024-01-14 11:26:21 |
| SVM | TensorFlow | Classification | Image | 0.8237374 | 5.4327773 | 0.9762333 | 0.9646725 | 1.0046990 | 2024-01-15 11:26:21 |
| SVM | PyTorch | Classification | Image | 9.4901527 | 0.6707436 | 0.8327265 | 0.9257917 | NA | 2024-01-16 11:26:21 |
| K-Means | Keras | Classification | Image | NA | 0.9909938 | 0.9655409 | 0.4615408 | 2.2067923 | 2024-01-17 11:26:21 |
| SVM | PyTorch | Clustering | Tabular | 0.9635173 | 0.8632075 | 0.7917784 | 0.6356384 | 4.1716509 | 2024-01-18 11:26:21 |
| Neural Network | PyTorch | Clustering | Time Series | 0.5301337 | 0.4163005 | 0.5086365 | 0.7320227 | 0.6874664 | 2024-01-19 11:26:21 |
| SVM | TensorFlow | Classification | Text | 0.9672180 | 0.4391228 | 0.3737554 | 0.7018795 | 3.7011367 | 2024-01-20 11:26:21 |
| Random Forest | TensorFlow | Regression | Tabular | 0.6758113 | 0.6783588 | 0.8472767 | 0.5163178 | 2.7041291 | 2024-01-21 11:26:21 |
| K-Means | TensorFlow | Regression | Time Series | 0.5507104 | 0.9455321 | 0.7509045 | 0.9152901 | 1.5109322 | 2024-01-22 11:26:21 |
| Neural Network | PyTorch | Regression | Tabular | 0.7429359 | 0.7232211 | 0.3337302 | 0.8061645 | 2.5148160 | 2024-01-23 11:26:21 |
| K-Means | Keras | Regression | Text | 0.6283883 | 0.6986875 | 0.5520353 | 0.9027450 | 1.5697161 | 2024-01-24 11:26:21 |
| Random Forest | Scikit-learn | Classification | Time Series | 0.6424365 | 0.4632842 | 0.9697599 | 0.9152586 | 3.0208016 | 2024-01-25 11:26:21 |
| Random Forest | Scikit-learn | Clustering | Tabular | 0.6536450 | 0.7940681 | 0.6502808 | NA | 2.2258352 | 2024-01-26 11:26:21 |
| Random Forest | TensorFlow | Regression | Text | 0.9015129 | 8.9326190 | 0.6029104 | 0.6635264 | 0.9055871 | 2024-01-27 11:26:21 |
| SVM | TensorFlow | Classification | Image | 0.7695806 | 0.6282520 | 0.6203897 | 0.7663281 | 0.6712571 | 2024-01-28 11:26:21 |
| SVM | PyTorch | Regression | Text | 0.6556538 | 0.8653671 | 0.4462179 | 0.4962192 | 2.7788088 | 2024-01-29 11:26:21 |
| K-Means | Scikit-learn | Regression | Image | 0.8051669 | 0.9786860 | 0.5580950 | 0.8041873 | 4.5218239 | 2024-01-30 11:26:21 |
| K-Means | TensorFlow | Classification | Tabular | 0.8580753 | 0.5222599 | 0.5588693 | 0.5075520 | 1.7853927 | 2024-01-31 11:26:21 |
| Neural Network | Keras | Clustering | Time Series | 0.6363120 | 0.7139978 | 0.3366485 | 0.8163698 | 3.6917005 | 2024-02-01 11:26:21 |
| Neural Network | Keras | Clustering | Time Series | 0.7067746 | 0.5722828 | 0.8372973 | 0.5377589 | 3.3274406 | 2024-02-02 11:26:21 |
| K-Means | TensorFlow | Classification | Tabular | 0.5609430 | 0.8757127 | 0.5915531 | 0.4705308 | 4.6646191 | 2024-02-03 11:26:21 |
| SVM | TensorFlow | Clustering | Time Series | 0.5905747 | 0.7465560 | 0.8755259 | 0.4991707 | 4.1228070 | 2024-02-04 11:26:21 |
| Random Forest | Scikit-learn | Classification | Time Series | NA | 0.7807495 | 0.8952436 | 0.4011953 | 2.8763658 | 2024-02-05 11:26:21 |
| K-Means | Scikit-learn | Classification | Image | 0.5907192 | 0.8787485 | 0.4483958 | 0.8312438 | 3.3194494 | 2024-02-06 11:26:21 |
| Neural Network | PyTorch | Classification | Tabular | 0.7625817 | 0.6375823 | 0.7601474 | 0.8394406 | 4.5020937 | 2024-02-07 11:26:21 |
| SVM | Scikit-learn | Clustering | Text | 0.8545231 | 0.9490540 | 0.6305973 | 0.7089600 | 2.0576420 | 2024-02-08 11:26:21 |
| K-Means | Keras | Classification | Image | NA | 0.7198173 | 0.9161097 | 0.4968177 | 1.7012941 | 2024-02-09 11:26:21 |
| K-Means | Keras | Regression | Tabular | 0.7836561 | 0.4947729 | 0.4510185 | 0.4501326 | 0.1529743 | 2024-02-10 11:26:21 |
| SVM | TensorFlow | Clustering | Image | 0.6282814 | 0.8175395 | 0.7744692 | 0.4114774 | 4.1501003 | 2024-02-11 11:26:21 |
| K-Means | Scikit-learn | Clustering | Text | 0.9814634 | 0.8759568 | 0.7254265 | 0.4994489 | 4.0248054 | 2024-02-12 11:26:21 |
| SVM | PyTorch | Clustering | Text | 0.7417728 | NA | 0.5067110 | 0.9345133 | 0.6118271 | 2024-02-13 11:26:21 |
| Random Forest | Keras | Clustering | Tabular | 0.9029963 | 0.9143076 | 0.3956206 | 0.5449221 | 2.9266012 | 2024-02-14 11:26:21 |
| SVM | Keras | Regression | Text | 0.7751133 | 0.9436860 | 0.7561478 | 0.6125628 | 2.3735103 | 2024-02-15 11:26:21 |
| SVM | PyTorch | Clustering | Image | 0.5217063 | 0.5661427 | 0.8170182 | 4.6320729 | 0.6816746 | 2024-02-16 11:26:21 |
| SVM | PyTorch | Clustering | Text | 0.8165757 | 0.9901129 | 0.5209391 | 0.5334168 | 4.9047843 | 2024-02-17 11:26:21 |
| K-Means | Keras | Classification | Image | 0.9757017 | 0.4844269 | 0.7513828 | 0.7115347 | 1.1520098 | 2024-02-18 11:26:21 |
| K-Means | Keras | Clustering | Image | 0.8008059 | 0.5212094 | 5.7659164 | 0.7646516 | 0.4294475 | 2024-02-19 11:26:21 |
| SVM | PyTorch | Regression | Text | 0.9095944 | 0.5105349 | 0.7992448 | 0.5472114 | 3.0147522 | 2024-02-20 11:26:21 |
| K-Means | Keras | Regression | Tabular | 0.9421032 | 0.9363938 | 0.4394507 | 0.4346393 | 3.7204467 | 2024-02-21 11:26:21 |
| Neural Network | TensorFlow | Regression | Time Series | 0.6140399 | 0.7925755 | 0.9231505 | 0.6346197 | 0.2589729 | 2024-02-22 11:26:21 |
| Neural Network | TensorFlow | Regression | Text | 0.6060224 | 0.4912626 | 0.5011867 | 0.5405220 | 3.3277164 | 2024-02-23 11:26:21 |
| K-Means | PyTorch | Clustering | Image | 0.8054905 | 0.6641941 | 0.5574502 | 0.5317324 | 2.7082302 | 2024-02-24 11:26:21 |
| K-Means | Scikit-learn | Clustering | Image | 0.7055142 | 0.7691788 | 0.3406644 | 0.9759177 | 0.6059985 | 2024-02-25 11:26:21 |
| SVM | PyTorch | Regression | Text | 0.9199307 | 0.4500785 | 0.3780585 | 0.7697803 | 0.9453670 | 2024-02-26 11:26:21 |
| Random Forest | PyTorch | Regression | Tabular | 0.9500116 | 0.9294498 | 0.6611033 | 0.7341271 | 2.8830741 | 2024-02-27 11:26:21 |
| K-Means | Scikit-learn | Clustering | Tabular | 0.6767107 | 0.8821621 | 0.4873149 | NA | 1.5521523 | 2024-02-28 11:26:21 |
| Neural Network | Scikit-learn | Regression | Image | 0.6184353 | 0.7031241 | 0.8848362 | 0.6573666 | 4.6977471 | 2024-02-29 11:26:21 |
| SVM | Scikit-learn | Classification | Image | 0.8902628 | 0.9802760 | 0.3102854 | 0.7245430 | 4.1118271 | 2024-03-01 11:26:21 |
| K-Means | TensorFlow | Regression | Tabular | 0.6374030 | 0.6506566 | 0.5653658 | 8.1785788 | 4.9194793 | 2024-03-02 11:26:21 |
| Neural Network | Keras | Regression | Time Series | 0.9113072 | 0.9904662 | 0.5361419 | 0.8212877 | 1.3723871 | 2024-03-03 11:26:21 |
| Neural Network | TensorFlow | Classification | Text | 0.7118691 | 0.8007520 | 0.3135293 | 0.5030163 | 4.8516458 | 2024-03-04 11:26:21 |
| Random Forest | Keras | Classification | Image | 0.8337749 | 0.7808028 | 0.3870579 | 0.7000677 | 2.2130460 | 2024-03-05 11:26:21 |
| SVM | TensorFlow | Clustering | Image | 0.5477677 | 0.4995729 | 0.5895499 | 0.6471749 | 1.8028421 | 2024-03-06 11:26:21 |
| SVM | Keras | Clustering | Tabular | 0.8119297 | 0.9291567 | 0.6450052 | 0.9223162 | 0.3467127 | 2024-03-07 11:26:21 |
| Random Forest | TensorFlow | Classification | Text | NA | 0.6564938 | 0.5830028 | 0.7788514 | 0.3585498 | 2024-03-08 11:26:21 |
| Random Forest | Scikit-learn | Classification | Tabular | 0.7933042 | 0.4973400 | 0.6716564 | 0.7195024 | 3.4908552 | 2024-03-09 11:26:21 |
| SVM | PyTorch | Clustering | Text | 0.5840071 | 4.0756451 | 0.7165922 | 0.4692368 | 2.3438521 | 2024-03-10 11:26:21 |
| SVM | TensorFlow | Regression | Text | 0.8684369 | 0.7358534 | 0.3069467 | 0.7633827 | 1.2099560 | 2024-03-11 11:26:21 |
| K-Means | Keras | Classification | Text | 0.9313985 | 0.7164398 | 0.6248666 | 0.4703223 | 3.1084545 | 2024-03-12 11:26:21 |
| K-Means | Scikit-learn | Clustering | Image | 0.6083699 | 0.8316122 | 0.9744495 | 0.6023239 | 1.3390048 | 2024-03-13 11:26:21 |
| Random Forest | TensorFlow | Regression | Time Series | 0.5478573 | 0.9341548 | 0.6633226 | 0.4857052 | 2.9303956 | 2024-03-14 11:26:21 |
| K-Means | TensorFlow | Classification | Tabular | 0.5118193 | 0.4476440 | 0.7742796 | 0.8152442 | 1.8601229 | 2024-03-15 11:26:21 |
| Neural Network | Scikit-learn | Regression | Time Series | 0.8209858 | 0.8388979 | 0.5183047 | 0.5237513 | 4.1354059 | 2024-03-16 11:26:21 |
| K-Means | TensorFlow | Clustering | Tabular | 0.8035470 | 0.5124472 | 0.8417940 | 0.6351156 | 4.1214112 | 2024-03-17 11:26:21 |
| K-Means | PyTorch | Classification | Text | 0.7733487 | 0.9149062 | 0.8410450 | 9.3740487 | 2.4390170 | 2024-03-18 11:26:21 |
| Neural Network | TensorFlow | Regression | Image | 0.6159735 | 0.8914381 | 0.6649072 | 0.5225898 | 1.8190136 | 2024-03-19 11:26:21 |
| Random Forest | PyTorch | Classification | Time Series | 0.6954530 | 0.7244763 | 0.9832097 | 0.7046830 | 1.8765430 | 2024-03-20 11:26:21 |
| Neural Network | PyTorch | Regression | Image | 0.7972382 | 0.8261457 | 0.3878852 | 0.6515630 | 4.0480012 | 2024-03-21 11:26:21 |
| K-Means | Scikit-learn | Clustering | Tabular | 0.7483834 | 0.5886101 | 0.3118634 | 0.4108744 | 1.7080795 | 2024-03-22 11:26:21 |
| Random Forest | TensorFlow | Clustering | Image | 0.9938928 | 0.6827007 | 0.8391107 | 0.8756549 | 1.1243909 | 2024-03-23 11:26:21 |
| K-Means | Scikit-learn | Classification | Image | 0.5682199 | 0.8929821 | 0.8650089 | 0.4414275 | 0.5149729 | 2024-03-24 11:26:21 |
| Neural Network | TensorFlow | Regression | Time Series | NA | 0.6755591 | 0.3841451 | 0.6845530 | 2.3867963 | 2024-03-25 11:26:21 |
| Neural Network | TensorFlow | Classification | Text | 0.7021594 | 0.6146790 | 4.8590798 | 0.7364070 | 2.4624473 | 2024-03-26 11:26:21 |
| K-Means | Keras | Classification | Image | 0.7140998 | 0.6965275 | 0.3122867 | 0.7770559 | 4.2204527 | 2024-03-27 11:26:21 |
| SVM | TensorFlow | Regression | Text | 0.8587989 | 0.8969496 | 0.5053160 | 0.8131790 | 1.1840696 | 2024-03-28 11:26:21 |
| SVM | Scikit-learn | Regression | Tabular | 0.8462181 | 0.6011248 | 0.8411993 | 0.5519634 | 1.9668572 | 2024-03-29 11:26:21 |
| Neural Network | PyTorch | Regression | Image | 0.9956280 | 0.5042570 | 0.6625724 | 0.4059873 | 4.0611881 | 2024-03-30 11:26:21 |
| Neural Network | TensorFlow | Clustering | Time Series | 0.5641971 | 0.8272084 | 5.4366692 | 0.8340662 | 4.1357557 | 2024-03-31 11:26:21 |
| SVM | Keras | Classification | Tabular | 0.5520548 | 0.8955869 | 0.5602175 | 0.7213940 | 1.9845943 | 2024-04-01 11:26:21 |
| SVM | Scikit-learn | Classification | Tabular | 0.8621694 | 0.4603825 | 0.3009475 | NA | 2.3497077 | 2024-04-02 11:26:21 |
| K-Means | TensorFlow | Clustering | Time Series | 0.7891935 | 0.5439245 | 0.5098604 | 0.8928330 | 1.5861009 | 2024-04-03 11:26:21 |
| K-Means | Scikit-learn | Regression | Image | 0.6370803 | 0.4851832 | 0.7525211 | NA | NA | 2024-04-04 11:26:21 |
| SVM | Keras | Clustering | Image | 0.5397097 | 0.6087648 | 0.9819361 | 0.6910568 | 0.6813545 | 2024-04-05 11:26:21 |
| K-Means | Keras | Clustering | Tabular | 0.5428291 | 0.6702106 | 0.8929426 | 0.6001770 | 4.6753722 | 2024-04-06 11:26:21 |
| K-Means | Scikit-learn | Clustering | Image | 0.9470954 | 0.8492958 | 0.3165165 | 0.8749349 | NA | 2024-04-07 11:26:21 |
| Random Forest | TensorFlow | Classification | Text | 0.5959337 | 0.7906886 | 0.9289924 | 0.6707765 | 2.7047035 | 2024-04-08 11:26:21 |
| K-Means | PyTorch | Clustering | Time Series | 0.6616858 | 0.7725571 | 0.8482389 | 0.5100653 | 0.2600294 | 2024-04-09 11:26:21 |
| Neural Network | Keras | Classification | Text | 0.6133282 | 0.6114250 | 0.8462633 | 0.9129844 | 2.4304213 | 2024-04-10 11:26:21 |
| K-Means | TensorFlow | Classification | Image | 0.6774982 | 0.9048685 | 0.6205970 | 9.2953593 | 2.0979657 | 2024-04-11 11:26:21 |
| K-Means | TensorFlow | Classification | Tabular | 0.5347119 | 0.6827723 | 0.5786037 | 0.6797859 | 0.8899722 | 2024-04-12 11:26:21 |
| SVM | PyTorch | Regression | Time Series | 0.7595299 | 0.9874630 | 0.5120410 | 0.4454198 | 3.3164071 | 2024-04-13 11:26:21 |
| Neural Network | Keras | Classification | Image | 0.5338063 | 0.7804853 | 0.3459864 | 0.6326957 | 4.8586394 | 2024-04-14 11:26:21 |
| K-Means | Keras | Classification | Image | 0.9001783 | 0.4757588 | 0.4597648 | NA | 2.8547252 | 2024-04-15 11:26:21 |
| K-Means | TensorFlow | Regression | Tabular | 0.6168560 | 0.8057065 | 0.4726225 | 0.9410644 | 3.6022911 | 2024-04-16 11:26:21 |
| Random Forest | TensorFlow | Classification | Tabular | 0.7700060 | 0.5950624 | 0.6388539 | 0.5220836 | 4.3540722 | 2024-04-17 11:26:21 |
| K-Means | PyTorch | Clustering | Text | 0.9400395 | 0.8117963 | 0.8232111 | 0.4401842 | 2.1465683 | 2024-04-18 11:26:21 |
| K-Means | PyTorch | Clustering | Time Series | 0.8254387 | 0.4417847 | 0.6316669 | 0.9264103 | 0.6701566 | 2024-04-19 11:26:21 |
| Random Forest | Keras | Classification | Time Series | 0.7664789 | NA | 0.3404911 | 0.6336430 | 3.1026996 | 2024-04-20 11:26:21 |
| SVM | Scikit-learn | Regression | Tabular | 0.6621669 | 0.9134424 | 0.9704529 | 0.7250566 | 46.9856258 | 2024-04-21 11:26:21 |
| K-Means | Keras | Clustering | Text | 0.6665010 | 0.5363077 | 0.9599070 | 0.9808395 | 3.3427109 | 2024-04-22 11:26:21 |
| Random Forest | TensorFlow | Regression | Time Series | 0.8347435 | 0.9022247 | 0.8496327 | 0.4399388 | 0.4763349 | 2024-04-23 11:26:21 |
| Neural Network | Keras | Regression | Tabular | 0.9970697 | 0.5675657 | 0.9939295 | 0.7889908 | 1.8378644 | 2024-04-24 11:26:21 |
| SVM | Scikit-learn | Clustering | Image | NA | 0.7857291 | 0.6811376 | 0.4444633 | 2.7982506 | 2024-04-25 11:26:21 |
| Neural Network | PyTorch | Regression | Time Series | 0.7788917 | 0.8164903 | 0.9739378 | 0.6252814 | 2.0757180 | 2024-04-26 11:26:21 |
| Neural Network | Scikit-learn | Clustering | Text | 0.8653253 | 0.7075929 | 0.3529235 | 0.8822887 | 4.1848557 | 2024-04-27 11:26:21 |
| Random Forest | Scikit-learn | Regression | Text | 0.7326028 | 0.5831864 | 0.5559765 | 0.6600833 | 4.0918879 | 2024-04-28 11:26:21 |
| K-Means | Scikit-learn | Clustering | Text | 0.5300712 | NA | 0.4577669 | 0.9983094 | 3.0979720 | 2024-04-29 11:26:21 |
| Random Forest | PyTorch | Classification | Image | 0.7811484 | 0.4199136 | 0.4370832 | 0.7354356 | 1.9299439 | 2024-04-30 11:26:21 |
| Random Forest | Scikit-learn | Clustering | Time Series | 0.9788126 | 0.5823678 | 0.3985621 | 0.5926973 | 1.3511482 | 2024-05-01 11:26:21 |
| Random Forest | Scikit-learn | Clustering | Time Series | 0.5876515 | 0.7918977 | 0.7356895 | 5.3206680 | 0.6187842 | 2024-05-02 11:26:21 |
| Random Forest | Scikit-learn | Clustering | Image | NA | 0.9629829 | 0.8469253 | 0.6103123 | 1.8389986 | 2024-05-03 11:26:21 |
| SVM | TensorFlow | Clustering | Time Series | 0.6004668 | 0.9227227 | 0.7048089 | 0.6235200 | 2.1245453 | 2024-05-04 11:26:21 |
| K-Means | Scikit-learn | Regression | Image | 0.7679138 | 0.8596389 | 0.4028739 | 0.4412282 | 3.4115323 | 2024-05-05 11:26:21 |
| Neural Network | PyTorch | Classification | Image | 0.5483382 | 0.8730684 | 0.8677866 | 0.6217445 | 3.3249831 | 2024-05-06 11:26:21 |
| Neural Network | Scikit-learn | Clustering | Image | NA | 0.7989909 | 0.7451683 | 0.6785431 | 0.4435299 | 2024-05-07 11:26:21 |
| K-Means | Scikit-learn | Regression | Text | 0.8780817 | 0.5561721 | 0.5717160 | NA | 2.0367706 | 2024-05-08 11:26:21 |
| Neural Network | PyTorch | Classification | Time Series | 0.6737858 | 0.9443170 | 0.7718912 | 0.7940377 | 0.9907164 | 2024-05-09 11:26:21 |
| K-Means | Scikit-learn | Classification | Image | 0.8324559 | 0.8024394 | 0.4819335 | 0.8252594 | 0.8683823 | 2024-05-10 11:26:21 |
| Neural Network | PyTorch | Classification | Time Series | 0.8977250 | 0.7362644 | 0.5416345 | 0.4050182 | 4.1537805 | 2024-05-11 11:26:21 |
| Random Forest | Scikit-learn | Classification | Text | 0.9635889 | 0.4665937 | 0.9422401 | 0.5306004 | 0.3053846 | 2024-05-12 11:26:21 |
| Neural Network | PyTorch | Clustering | Image | 0.6173210 | 0.6682333 | 0.5033532 | 0.7970106 | 2.1539961 | 2024-05-13 11:26:21 |
| K-Means | Scikit-learn | Clustering | Tabular | 0.6996580 | 0.6762150 | 0.6289918 | 0.6903936 | 0.9241979 | 2024-05-14 11:26:21 |
| K-Means | Scikit-learn | Regression | Text | 0.5762080 | 0.9187382 | 0.9230988 | 0.4031881 | 4.4087181 | 2024-05-15 11:26:21 |
| K-Means | TensorFlow | Regression | Tabular | 0.9962418 | 0.7279889 | 0.7954049 | 0.8826968 | 28.2949852 | 2024-05-16 11:26:21 |
| K-Means | TensorFlow | Regression | Time Series | 0.9635005 | 0.6282403 | 0.3435423 | 0.8636857 | 1.2337651 | 2024-05-17 11:26:21 |
| K-Means | Scikit-learn | Classification | Time Series | 0.7699786 | 0.9860802 | 0.4031121 | 0.7290515 | 2.5618937 | 2024-05-18 11:26:21 |
| SVM | Scikit-learn | Classification | Text | 0.9210166 | NA | 0.3054891 | 0.4398780 | 3.6842832 | 2024-05-19 11:26:21 |
| SVM | Keras | Clustering | Time Series | 0.7604790 | 0.6535291 | 0.7416453 | 0.8599090 | 4.7947782 | 2024-05-20 11:26:21 |
| Neural Network | PyTorch | Classification | Tabular | NA | 0.4252148 | 0.6133714 | 0.7502282 | 1.1801854 | 2024-05-21 11:26:21 |
| K-Means | Keras | Classification | Image | 0.5445622 | 0.8439425 | 0.3939924 | 0.8691760 | 4.4422907 | 2024-05-22 11:26:21 |
| Neural Network | TensorFlow | Classification | Image | 0.8776352 | 0.9508459 | 0.9705539 | 0.8510482 | 4.6780902 | 2024-05-23 11:26:21 |
| K-Means | TensorFlow | Regression | Image | 0.5638567 | NA | 0.6707618 | NA | 4.5904607 | 2024-05-24 11:26:21 |
| K-Means | TensorFlow | Regression | Text | 0.9130338 | 0.9150050 | 0.4693253 | 0.7108048 | 3.2135303 | 2024-05-25 11:26:21 |
| SVM | TensorFlow | Clustering | Time Series | 0.8910140 | 0.5753309 | 0.6504225 | 0.4841947 | 3.1861212 | 2024-05-26 11:26:21 |
| SVM | Scikit-learn | Classification | Tabular | 0.8543723 | 0.9464621 | 0.7757342 | 0.8026945 | 2.0757321 | 2024-05-27 11:26:21 |
| Random Forest | TensorFlow | Classification | Time Series | 0.5180802 | 0.8523771 | 0.3533675 | 0.7722843 | 3.7867496 | 2024-05-28 11:26:21 |
| SVM | Scikit-learn | Clustering | Time Series | 0.6515642 | 0.8829441 | 0.4922927 | 0.8453519 | 2.7033407 | 2024-05-29 11:26:21 |
| Random Forest | Scikit-learn | Classification | Time Series | 0.6315563 | 0.4108039 | 0.8648758 | 0.5019286 | 3.4194465 | 2024-05-30 11:26:21 |
| Random Forest | TensorFlow | Classification | Image | 0.6800682 | 0.9776862 | 0.6217654 | 0.5169851 | 2.1994437 | 2024-05-31 11:26:21 |
| Random Forest | TensorFlow | Regression | Tabular | 0.5438214 | 0.8360026 | 0.6826040 | 0.9342457 | 3.6843327 | 2024-06-01 11:26:21 |
| Random Forest | PyTorch | Clustering | Tabular | 0.9684789 | 0.5828507 | 0.6029712 | NA | 4.1399104 | 2024-06-02 11:26:21 |
| Random Forest | Keras | Clustering | Time Series | 0.7769011 | 0.8976368 | 0.3307300 | 0.9449371 | 0.8175377 | 2024-06-03 11:26:21 |
| Neural Network | TensorFlow | Clustering | Image | 0.6527622 | 0.5689127 | 0.4160248 | 0.8552292 | 4.1813556 | 2024-06-04 11:26:21 |
| SVM | PyTorch | Clustering | Image | 0.6984908 | 0.9236523 | 0.6118791 | 0.7582932 | 2.7474530 | 2024-06-05 11:26:21 |
| Random Forest | PyTorch | Regression | Tabular | 0.7236013 | 0.4675482 | 0.4464298 | 0.7924796 | 4.2388630 | 2024-06-06 11:26:21 |
| K-Means | Keras | Regression | Image | 0.8002972 | 0.8222116 | 0.3349853 | 0.9334768 | 2.2133784 | 2024-06-07 11:26:21 |
| SVM | Scikit-learn | Classification | Image | 0.7578397 | 0.7244191 | 0.8905548 | 0.7472841 | 1.9572984 | 2024-06-08 11:26:21 |
| SVM | TensorFlow | Classification | Image | 0.9596960 | 0.4579207 | 0.9868348 | 0.7794348 | 4.5837976 | 2024-06-09 11:26:21 |
| Random Forest | Keras | Classification | Text | 0.7484817 | 0.5451363 | 0.8552000 | 0.4938860 | 1.3307294 | 2024-06-10 11:26:21 |
| Neural Network | TensorFlow | Classification | Time Series | 0.9960790 | 0.4074424 | 0.8976494 | 0.6843527 | 4.2366404 | 2024-06-11 11:26:21 |
| Random Forest | PyTorch | Regression | Tabular | 0.9257125 | 0.6812608 | 0.4693840 | 0.8298383 | 2.4717008 | 2024-06-12 11:26:21 |
| Neural Network | PyTorch | Clustering | Tabular | 0.6042553 | 0.5807592 | 0.9724389 | 0.5625656 | 2.6190677 | 2024-06-13 11:26:21 |
| K-Means | Scikit-learn | Regression | Text | 0.9652976 | 0.7590145 | 0.4378480 | 0.5213525 | 1.6114946 | 2024-06-14 11:26:21 |
| SVM | PyTorch | Classification | Time Series | 0.5581832 | 0.5783427 | 0.9660009 | 0.5882961 | 2.9079068 | 2024-06-15 11:26:21 |
| K-Means | PyTorch | Regression | Tabular | 0.9087249 | 0.5799515 | 0.9963735 | 0.5449004 | 1.6935349 | 2024-06-16 11:26:21 |
| Neural Network | Keras | Clustering | Image | 0.6903116 | 0.8459159 | 0.7982060 | 0.5289476 | 0.2924201 | 2024-06-17 11:26:21 |
| Neural Network | TensorFlow | Clustering | Tabular | 0.9389872 | 0.4288857 | 0.9868006 | 0.6549105 | 1.4327932 | 2024-06-18 11:26:21 |
| K-Means | TensorFlow | Regression | Image | 0.9340283 | 0.9417370 | 0.6986778 | 0.9447031 | 0.1312573 | 2024-06-19 11:26:21 |
| Neural Network | Keras | Regression | Text | NA | 0.9113583 | 0.4816792 | 0.7042358 | 4.8939385 | 2024-06-20 11:26:21 |
| K-Means | Scikit-learn | Regression | Image | 0.8950152 | 0.8006828 | 0.6058971 | 0.5127522 | 4.8321613 | 2024-06-21 11:26:21 |
| SVM | TensorFlow | Classification | Tabular | 0.6523396 | 0.7559329 | 0.7154927 | 0.4461830 | 2.0362610 | 2024-06-22 11:26:21 |
| K-Means | PyTorch | Regression | Tabular | 0.5404596 | 0.9353815 | 0.3511571 | 0.8176937 | 3.6690172 | 2024-06-23 11:26:21 |
| SVM | TensorFlow | Regression | Tabular | 0.7014901 | 0.5111981 | 0.7356403 | 0.6296793 | 1.7944499 | 2024-06-24 11:26:21 |
| K-Means | PyTorch | Regression | Text | 0.5867623 | 0.4473815 | 0.9868245 | 0.8930986 | 3.3883565 | 2024-06-25 11:26:21 |
| Neural Network | Scikit-learn | Clustering | Text | 0.8474755 | 0.5437061 | 0.4330754 | 0.7957065 | 4.0466072 | 2024-06-26 11:26:21 |
| K-Means | Keras | Clustering | Time Series | 0.6730499 | 0.8767470 | 0.8548166 | 0.8777449 | 4.7391056 | 2024-06-27 11:26:21 |
| Neural Network | TensorFlow | Classification | Tabular | 0.9878051 | 0.4208022 | 0.9355292 | 0.5631676 | 2.0610402 | 2024-06-28 11:26:21 |
| K-Means | Keras | Classification | Image | 0.8204860 | 0.7496841 | 0.9605911 | 0.8154154 | 3.9381601 | 2024-06-29 11:26:21 |
| K-Means | TensorFlow | Clustering | Text | 0.9112403 | 0.9972625 | 0.9720949 | 0.5584372 | 1.4030494 | 2024-06-30 11:26:21 |
| Random Forest | PyTorch | Clustering | Tabular | 0.5662623 | 0.9134177 | 0.6650217 | 0.9634411 | NA | 2024-07-01 11:26:21 |
| Neural Network | Keras | Clustering | Tabular | 0.9310072 | NA | 0.9841155 | 0.7818246 | NA | 2024-07-02 11:26:21 |
| Random Forest | TensorFlow | Regression | Text | 0.9613786 | 0.4381845 | 0.8301171 | 0.5947071 | 3.0572912 | 2024-07-03 11:26:21 |
| Neural Network | PyTorch | Regression | Time Series | 0.7435310 | 0.8988241 | 0.4131700 | 0.5617071 | 3.3315793 | 2024-07-04 11:26:21 |
| Random Forest | Keras | Clustering | Text | 0.8031265 | 0.7593871 | 0.6338301 | 0.5145560 | 3.4714232 | 2024-07-05 11:26:21 |
| SVM | Keras | Regression | Text | 0.8824049 | 0.4689598 | 0.8028318 | 0.8167846 | 0.6898991 | 2024-07-06 11:26:21 |
| K-Means | TensorFlow | Regression | Image | 0.5874193 | 0.4563144 | 0.4731382 | 0.5312294 | 4.6987959 | 2024-07-07 11:26:21 |
| Neural Network | TensorFlow | Classification | Image | 0.7512830 | 0.9457761 | 0.7484306 | 0.7571820 | 0.9877981 | 2024-07-08 11:26:21 |
| Neural Network | TensorFlow | Clustering | Time Series | 0.6993315 | 0.8015202 | 0.7666203 | 0.5587810 | 3.1514917 | 2024-07-09 11:26:21 |
| K-Means | PyTorch | Clustering | Tabular | 0.5731870 | 0.8975721 | 0.4138898 | 0.7971814 | 1.1911128 | 2024-07-10 11:26:21 |
| Neural Network | TensorFlow | Regression | Text | 0.6837672 | 0.9273873 | 0.6955597 | 0.8889638 | 1.6053604 | 2024-07-11 11:26:21 |
| Neural Network | Keras | Clustering | Time Series | 0.5340862 | 0.7430634 | 0.8401388 | 0.8668151 | 2.7776469 | 2024-07-12 11:26:21 |
| Random Forest | Keras | Classification | Image | 0.5129060 | 0.7104678 | NA | 0.8565108 | 2.1442478 | 2024-07-13 11:26:21 |
| Neural Network | TensorFlow | Classification | Text | 0.5675831 | 0.6582564 | 0.3084722 | 0.5126334 | 0.8851054 | 2024-07-14 11:26:21 |
| SVM | TensorFlow | Classification | Tabular | 0.9815576 | 0.5901680 | 0.3063269 | 0.4530310 | 0.9375884 | 2024-07-15 11:26:21 |
| SVM | Scikit-learn | Clustering | Image | 0.7747648 | 0.6607576 | 0.5499205 | 0.8193693 | 2.1489095 | 2024-07-16 11:26:21 |
| K-Means | Keras | Clustering | Image | 0.9829111 | 0.8643278 | 0.9483358 | 0.6210083 | 3.8106866 | 2024-07-17 11:26:21 |
| Neural Network | PyTorch | Clustering | Image | 0.7162489 | 0.7611541 | 0.4600737 | 0.6594077 | 4.5000268 | 2024-07-18 11:26:21 |
| K-Means | Scikit-learn | Clustering | Time Series | 0.6559081 | 0.9355140 | 0.7440546 | 0.4186895 | 0.5122255 | 2024-07-19 11:26:21 |
| SVM | TensorFlow | Clustering | Tabular | 0.7530709 | 0.6660280 | 0.4554531 | 0.5557459 | 2.0262091 | 2024-07-20 11:26:21 |
| Neural Network | TensorFlow | Classification | Text | 0.7197558 | 0.7642537 | 0.5251690 | 0.4202058 | 0.5912033 | 2024-07-21 11:26:21 |
| Neural Network | Keras | Regression | Time Series | 0.5528323 | 0.7787845 | 0.8936295 | 0.9275115 | 0.1813032 | 2024-07-22 11:26:21 |
| K-Means | TensorFlow | Classification | Time Series | 0.8204132 | 0.7550183 | 0.8102030 | 0.5460380 | 3.3424215 | 2024-07-23 11:26:21 |
| SVM | PyTorch | Clustering | Time Series | 0.6080191 | 0.8215803 | 0.3667795 | 0.7344023 | 3.0520023 | 2024-07-24 11:26:21 |
| Neural Network | Keras | Classification | Image | 0.8097940 | 0.5424601 | 0.6000914 | 0.4233876 | 0.8987937 | 2024-07-25 11:26:21 |
| K-Means | TensorFlow | Clustering | Tabular | 0.8251005 | 0.7074183 | 0.3204188 | NA | 1.2456829 | 2024-07-26 11:26:21 |
| SVM | Keras | Clustering | Time Series | 0.5760124 | 0.4625349 | 0.6366231 | 0.5938164 | 0.2161680 | 2024-07-27 11:26:21 |
| K-Means | TensorFlow | Classification | Text | 0.5306748 | 0.6307068 | 0.7637038 | 0.9387515 | 4.1912413 | 2024-07-28 11:26:21 |
| Random Forest | TensorFlow | Clustering | Tabular | 0.8903808 | 0.6926002 | 0.3829518 | 0.9328709 | 4.8759839 | 2024-07-29 11:26:21 |
| Neural Network | TensorFlow | Regression | Text | 0.7299002 | 0.7913346 | 0.5022195 | 0.5951744 | 0.7637517 | 2024-07-30 11:26:21 |
| Random Forest | PyTorch | Clustering | Tabular | 0.5290819 | 0.9703186 | 0.5784856 | 0.9405765 | 1.2342285 | 2024-07-31 11:26:21 |
| SVM | PyTorch | Regression | Text | 0.9974332 | 0.7603906 | 0.9436717 | 0.9976946 | 4.3552067 | 2024-08-01 11:26:21 |
| Random Forest | Keras | Regression | Image | 0.5288903 | 0.8461563 | 0.9952785 | 0.8952494 | 4.6396726 | 2024-08-02 11:26:21 |
| Random Forest | TensorFlow | Clustering | Time Series | 0.8475176 | 0.7037596 | 0.3314379 | 0.9069228 | 2.1561742 | 2024-08-03 11:26:21 |
| SVM | TensorFlow | Classification | Text | 0.9918395 | 0.7804624 | 0.8327055 | 0.5494052 | 0.3480501 | 2024-08-04 11:26:21 |
| K-Means | PyTorch | Regression | Tabular | 0.6195901 | 0.4425593 | 0.5602068 | 0.7460214 | 0.2930200 | 2024-08-05 11:26:21 |
| Random Forest | TensorFlow | Classification | Time Series | 0.5711247 | 0.5526349 | NA | 0.4403535 | 2.9123543 | 2024-08-06 11:26:21 |
| K-Means | PyTorch | Regression | Time Series | 0.5606925 | 0.6171119 | 0.8279855 | 0.4569508 | 20.2518603 | 2024-08-07 11:26:21 |
| Random Forest | TensorFlow | Clustering | Tabular | 0.6516376 | 0.6834960 | 0.9428985 | 0.9993356 | 0.2403969 | 2024-08-08 11:26:21 |
| K-Means | Keras | Clustering | Text | 0.5505229 | 0.4273892 | 0.9656500 | 0.5959835 | 2.9579367 | 2024-08-09 11:26:21 |
| SVM | TensorFlow | Regression | Image | 0.8460807 | 0.4840145 | 0.7039858 | NA | 0.1553824 | 2024-08-10 11:26:21 |
| Random Forest | TensorFlow | Clustering | Image | 0.5311459 | 0.5660886 | 5.4998481 | 0.8839990 | 3.9581226 | 2024-08-11 11:26:21 |
| SVM | Scikit-learn | Regression | Text | 0.7547111 | 0.9829196 | 0.8512844 | 0.9148140 | 1.6015208 | 2024-08-12 11:26:21 |
| Random Forest | PyTorch | Clustering | Time Series | 0.9983484 | 0.5988082 | 0.4757010 | 0.9985770 | 0.2972642 | 2024-08-13 11:26:21 |
| SVM | TensorFlow | Classification | Time Series | 0.9069851 | 0.6892246 | 0.6948518 | 0.5448979 | 2.9829259 | 2024-08-14 11:26:21 |
| SVM | TensorFlow | Clustering | Time Series | 0.8076097 | 0.5176586 | NA | 0.4242105 | 2.0486536 | 2024-08-15 11:26:21 |
| Random Forest | Scikit-learn | Classification | Time Series | 0.6531268 | NA | 0.7596418 | 0.6467149 | 4.8716220 | 2024-08-16 11:26:21 |
| Random Forest | Scikit-learn | Clustering | Text | 0.8119479 | 0.5684099 | 0.4682792 | 0.4780484 | 2.7665734 | 2024-08-17 11:26:21 |
| Random Forest | PyTorch | Classification | Time Series | 0.7635207 | 0.5241955 | 0.4341151 | 0.4134555 | 1.4486720 | 2024-08-18 11:26:21 |
| Neural Network | Scikit-learn | Clustering | Tabular | 0.7130417 | 0.7099436 | 0.9427674 | 0.6162561 | 3.5762504 | 2024-08-19 11:26:21 |
| K-Means | Keras | Classification | Time Series | 0.5653552 | 0.4033035 | 0.3712626 | 0.8702430 | 1.4303108 | 2024-08-20 11:26:21 |
| Neural Network | Scikit-learn | Regression | Image | 0.9433021 | 0.4045984 | 0.6541705 | 0.7397084 | 4.5307921 | 2024-08-21 11:26:21 |
| Neural Network | Keras | Regression | Time Series | NA | 0.5314413 | 0.4545969 | 0.5876668 | 1.9361377 | 2024-08-22 11:26:21 |
| SVM | PyTorch | Classification | Text | 0.5973113 | 0.4220328 | 0.3272510 | 0.7926052 | 2.7943560 | 2024-08-23 11:26:21 |
| Random Forest | PyTorch | Clustering | Image | 0.6838797 | 0.4648155 | 0.3252132 | 0.5392109 | 0.3478082 | 2024-08-24 11:26:21 |
| K-Means | PyTorch | Classification | Text | 0.7070649 | 0.6033164 | 0.4226552 | 0.4086289 | 2.1879941 | 2024-08-25 11:26:21 |
| SVM | PyTorch | Clustering | Text | 0.9137689 | 0.8815514 | 0.9067392 | 0.8586120 | NA | 2024-08-26 11:26:21 |
| Neural Network | PyTorch | Regression | Image | 0.8668072 | 0.7432292 | 0.4977351 | 0.7742459 | 4.0476791 | 2024-08-27 11:26:21 |
| Random Forest | Keras | Clustering | Text | 0.8846524 | NA | 0.9653214 | 0.8573816 | 1.1991609 | 2024-08-28 11:26:21 |
| SVM | Keras | Regression | Text | 0.5055156 | 5.7609329 | 0.7071356 | 0.4233628 | 1.2077874 | 2024-08-29 11:26:21 |
| Random Forest | PyTorch | Clustering | Time Series | 0.7080770 | 0.9590522 | 0.6056299 | 0.9022718 | 4.1047960 | 2024-08-30 11:26:21 |
| SVM | Scikit-learn | Clustering | Tabular | 0.7406721 | 0.6382090 | 0.7060622 | 0.7717157 | 4.6589523 | 2024-08-31 11:26:21 |
| Random Forest | TensorFlow | Clustering | Text | 0.5095961 | 0.4522557 | 0.6616889 | 0.7380372 | 0.5672685 | 2024-09-01 11:26:21 |
| Neural Network | PyTorch | Classification | Text | 0.6299066 | 0.7702399 | 0.8311434 | 7.7476843 | 2.3052873 | 2024-09-02 11:26:21 |
| K-Means | Scikit-learn | Classification | Text | 0.8801449 | 0.4683030 | 0.4977472 | NA | 1.7535260 | 2024-09-03 11:26:21 |
| Neural Network | TensorFlow | Regression | Time Series | 0.5685549 | 0.6071339 | 0.5471353 | 0.7521619 | 4.3663734 | 2024-09-04 11:26:21 |
| K-Means | PyTorch | Regression | Tabular | 0.7676551 | 7.0444716 | 0.9258660 | 0.7485702 | 0.5092721 | 2024-09-05 11:26:21 |
| Random Forest | PyTorch | Classification | Image | 0.6076009 | 0.9245335 | 0.9625196 | 0.9944075 | 1.1345171 | 2024-09-06 11:26:21 |
| SVM | Keras | Regression | Time Series | NA | 0.6961279 | 0.9247908 | 0.8540381 | 3.7870949 | 2024-09-07 11:26:21 |
| Neural Network | TensorFlow | Classification | Time Series | 0.6206007 | 0.8213553 | 0.5936136 | 0.6653763 | 0.3513399 | 2024-09-08 11:26:21 |
| K-Means | TensorFlow | Clustering | Tabular | 0.9879369 | 0.9956901 | 0.8462559 | 0.8244382 | 2.5134234 | 2024-09-09 11:26:21 |
| Neural Network | Scikit-learn | Regression | Tabular | 0.9007686 | 0.4788935 | NA | 0.6335383 | 2.2663245 | 2024-09-10 11:26:21 |
| K-Means | Keras | Regression | Time Series | 0.9797883 | 0.5648389 | 0.6482779 | 0.5373253 | 1.7385658 | 2024-09-11 11:26:21 |
| Neural Network | Keras | Classification | Image | 0.7439270 | 0.6367456 | 0.4432761 | 0.7581111 | 2.0334043 | 2024-09-12 11:26:21 |
| K-Means | Keras | Regression | Time Series | 0.5548681 | 0.6530969 | 0.7137912 | 0.9569093 | 2.6967089 | 2024-09-13 11:26:21 |
| K-Means | Keras | Regression | Tabular | 0.7739797 | 0.6466126 | 0.4302951 | 0.9574837 | 0.8907001 | 2024-09-14 11:26:21 |
| Random Forest | TensorFlow | Clustering | Image | 0.7271887 | NA | 0.5320953 | 0.6051432 | 2.9027798 | 2024-09-15 11:26:21 |
| K-Means | TensorFlow | Regression | Tabular | 0.9221785 | 0.8284196 | 0.8985211 | 0.7166065 | 4.0466184 | 2024-09-16 11:26:21 |
| Random Forest | PyTorch | Clustering | Image | 0.5490413 | 0.7647431 | 0.4449531 | 0.5269815 | 3.8247886 | 2024-09-17 11:26:21 |
## [1] "Algorithm" "Framework" "Problem_Type" "Dataset_Type"
## [5] "Accuracy" "Precision" "Recall" "F1_Score"
## [9] "Training_Time" "Date"
## [1] 560 10
Las variables involucradas en este estudio son:
Algorithm (categórica): Tipo de algoritmo de IA utilizado(‘Neural Network’, ‘Random Forest’, ‘SVM’, ‘K-Means’)
Accuracy (numérica, continua): Precisión del modelo en el conjunto de prueba (entre 0 y 1).
Algorithm (categórica): Tipo de algoritmo de IA utilizado(‘Neural Network’, ‘Random Forest’, ‘SVM’, ‘K-Means’)
Framework (categórica): Framework o biblioteca utilizada para la implementación del modelo de IA(‘TensorFlow’, ‘PyTorch’, ‘Keras’,‘Scikit-learn’)
Problem_Type (categórica): Tipo de problema abordado por el modelo.(‘Classification’, ‘Regression’, ‘Clustering’)
Dataset_Type (categórica): Tipo de datos utilizados en el entrenamiento del modelo(‘Image’, ‘Text’, ‘Tabular’, ‘Time Series’.)
Accuracy (numérica, continua): Precisión del modelo en el conjunto de prueba (entre 0 y 1).}
Precision (numérica, continua): Precisión del modelo (valor entre 0 y 1).
Recall (numérica, continua): Sensibilidad o capacidad del modelo para identificar correctamente los positivos (entre 0 y 1).
F1_Score (numérica, continua): Medida armónica entre precisión y recall (entre 0 y 1).
Training_Time (numérica, continua): Tiempo de entrenamiento del modelo en horas.
Date (fecha): Fecha en la que se realizó la evaluación del modelo, cubriendo el último año.
| Variable | Definición Conceptual | Definición Operacional | Indicador(es) | Escala de Medición |
|---|---|---|---|---|
| Accuracy | La precisión de un modelo es la proporción de predicciones correctas sobre el total de predicciones realizadas. | Medida numérica que representa la precisión del modelo en un conjunto de prueba. | Valor numérico entre 0 y 1 | Continua, entre 0 y 1 |
| Algorithm | Tipo de algoritmo de Inteligencia Artificial utilizado en el modelo. | Categorización de los algoritmos usados (Ej. ‘Neural Network’, ‘Random Forest’, etc.). | Algoritmos listados: Neural Network, Random Forest, SVM, K-Means | Categórica |
| Framework | Herramienta o biblioteca usada para implementar el modelo de IA. | Nombre del framework que se utilizó para entrenar el modelo. | Frameworks listados: TensorFlow, PyTorch, Keras, Scikit-learn | Categórica |
| Problem_Type | Tipo de problema que el modelo está resolviendo, como clasificación, regresión, etc. | Categorización del tipo de problema abordado en el modelo. | Clasificación, Regresión, Clustering | Categórica |
| Dataset_Type | Tipo de datos utilizados en el entrenamiento del modelo (ej. Imagen, Texto, Tabular, Series Temporales). | Categorización de los datos usados en el entrenamiento del modelo. | Tipos de datos: Imagen, Texto, Tabular, Series Temporales | Categórica |
| Precision | La precisión es la proporción de verdaderos positivos entre todos los positivos predichos. | Medida numérica de la precisión del modelo en cuanto a las predicciones positivas. | Valor numérico entre 0 y 1 | Continua, entre 0 y 1 |
| Recall | La sensibilidad o recall mide la proporción de verdaderos positivos entre todos los casos realmente positivos. | Medida numérica de la capacidad del modelo para identificar correctamente los positivos. | Valor numérico entre 0 y 1 | Continua, entre 0 y 1 |
| F1_Score | El F1-Score es la medida armónica entre precisión y recall, que balancea ambos aspectos. | Medida numérica que refleja el equilibrio entre la precisión y el recall del modelo. | Valor numérico entre 0 y 1 | Continua, entre 0 y 1 |
| Training_Time | Tiempo total que se toma para entrenar el modelo, generalmente expresado en horas. | Medida numérica del tiempo en horas utilizado para entrenar el modelo. | Valor numérico que representa el tiempo (en horas) | Continua, en horas |
| Date | Fecha en la que se realizó la evaluación del modelo, cubriendo el último año. | Fecha en que se realizó la evaluación del modelo. | Fecha de evaluación | Fecha |
#K-Means
datos_K <- datos %>%
filter(Problem_Type == "Regression", Algorithm == "K-Means")
summary(datos_K)
## Algorithm Framework Problem_Type Dataset_Type
## Length:50 Length:50 Length:50 Length:50
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## Accuracy Precision Recall F1_Score
## Min. :0.5405 Min. :0.4231 Min. :0.3193 Min. :0.4032
## 1st Qu.:0.6218 1st Qu.:0.5249 1st Qu.:0.4556 1st Qu.:0.5328
## Median :0.7678 Median :0.6486 Median :0.5685 Median :0.7313
## Mean :0.7573 Mean :0.6709 Mean :0.6172 Mean :0.7114
## 3rd Qu.:0.8979 3rd Qu.:0.8181 3rd Qu.:0.7521 3rd Qu.:0.8815
## Max. :0.9962 Max. :0.9787 Max. :0.9964 Max. :0.9618
## Training_Time Date
## Min. :0.1313 Min. :2023-03-13 11:26:21.07
## 1st Qu.:1.5249 1st Qu.:2023-08-16 05:26:21.07
## Median :2.3868 Median :2024-02-26 11:26:21.07
## Mean :2.5702 Mean :2024-01-22 10:28:45.07
## 3rd Qu.:3.7187 3rd Qu.:2024-06-15 23:26:21.07
## Max. :4.9195 Max. :2024-09-16 11:26:21.07
ggp1 <- ggplot(data.frame(value=datos_K$F1_Score), aes(x=value)) +
geom_histogram(fill="#FD0000", color="#E52521", alpha=0.9) +
ggtitle("Base de datos original") +
xlab("K-Means") + ylab("Frequencia") +
theme_ipsum() +
theme(plot.title = element_text(size=15))
ggp1
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## Algorithm Framework Problem_Type Dataset_Type
## Length:49 Length:49 Length:49 Length:49
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## Accuracy Precision Recall F1_Score
## Min. :0.5152 Min. :0.4046 Min. :0.3082 Min. :0.4060
## 1st Qu.:0.6236 1st Qu.:0.5676 1st Qu.:0.4475 1st Qu.:0.5952
## Median :0.7531 Median :0.7232 Median :0.5836 Median :0.7042
## Mean :0.7729 Mean :0.7034 Mean :0.6048 Mean :0.7115
## 3rd Qu.:0.9113 3rd Qu.:0.8059 3rd Qu.:0.7075 3rd Qu.:0.8213
## Max. :0.9986 Max. :0.9905 Max. :0.9939 Max. :0.9882
## Training_Time Date
## Min. :0.1813 Min. :2023-03-14 11:26:21.07
## 1st Qu.:1.8190 1st Qu.:2023-07-19 11:26:21.07
## Median :2.3868 Median :2023-11-23 11:26:21.07
## Mean :2.5956 Mean :2023-12-13 12:54:30.88
## 3rd Qu.:4.0477 3rd Qu.:2024-03-30 11:26:21.07
## Max. :4.8939 Max. :2024-09-10 11:26:21.07
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## Algorithm Framework Problem_Type Dataset_Type
## Length:38 Length:38 Length:38 Length:38
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## Accuracy Precision Recall F1_Score
## Min. :0.5198 Min. :0.4382 Min. :0.3163 Min. :0.4311
## 1st Qu.:0.6824 1st Qu.:0.6791 1st Qu.:0.5594 1st Qu.:0.5460
## Median :0.7531 Median :0.8035 Median :0.6851 Median :0.6604
## Mean :0.7827 Mean :0.7598 Mean :0.6900 Mean :0.6765
## 3rd Qu.:0.9268 3rd Qu.:0.8801 3rd Qu.:0.8325 3rd Qu.:0.8019
## Max. :0.9997 Max. :0.9832 Max. :0.9953 Max. :0.9802
## Training_Time Date
## Min. :0.1938 Min. :2023-03-17 11:26:21.07
## 1st Qu.:1.5868 1st Qu.:2023-06-15 11:26:21.07
## Median :2.7824 Median :2023-09-06 11:26:21.07
## Mean :2.6726 Mean :2023-10-10 06:23:11.60
## 3rd Qu.:3.9692 3rd Qu.:2024-01-25 23:26:21.07
## Max. :4.8085 Max. :2024-08-02 11:26:21.07
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## Algorithm Framework Problem_Type Dataset_Type
## Length:52 Length:52 Length:52 Length:52
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## Accuracy Precision Recall F1_Score
## Min. :0.5055 Min. :0.4031 Min. :0.3011 Min. :0.4091
## 1st Qu.:0.7176 1st Qu.:0.5594 1st Qu.:0.5040 1st Qu.:0.5512
## Median :0.7539 Median :0.7116 Median :0.6921 Median :0.7091
## Mean :0.7716 Mean :0.7106 Mean :0.6606 Mean :0.6959
## 3rd Qu.:0.8686 3rd Qu.:0.8712 3rd Qu.:0.8227 3rd Qu.:0.8163
## Max. :0.9974 Max. :0.9990 Max. :0.9916 Max. :0.9977
## Training_Time Date
## Min. :0.1032 Min. :2023-03-08 11:26:21.07
## 1st Qu.:1.1214 1st Qu.:2023-08-07 17:26:21.07
## Median :2.1702 Median :2023-10-11 23:26:21.07
## Mean :2.3372 Mean :2023-11-14 11:54:02.61
## 3rd Qu.:3.5715 3rd Qu.:2024-02-21 23:26:21.07
## Max. :4.9786 Max. :2024-09-07 11:26:21.07
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
Se hará el analisis de la normalidad con la gráfica QQ plot donde veremos como es el comportamiento de cada variable y si puede ser normal. Además, se realizará la prueba de Anderson-Darling para verificar si cada variable numérica tiene una distribución normal.
datos_K <- datos %>%
filter(Problem_Type == "Regression")
names_numeric_vars <- c("Accuracy", "Precision", "F1_Score", "Training_Time", "Recall")
for (var in names_numeric_vars){
qqnorm(datos_K[[var]], main = paste("QQ Plot -", var))
qqline(datos_K[[var]], col = "red")
}
Ahora tendremos que verificar si lo analizado en el gráfico es
verdad, para ello haremos la prueba de normalidad Anderson-Darling con
un nivel de confianza del 95% donde se toma como hipotesis nula que los
datos siguen una distribución normal y como alternativa que los datos no
son normales.
Primero se filtra la base de datos para que solo tome las filas con
problemas de regresión.
datos_filtrados<- datos %>%
filter(Problem_Type == "Regression")
ad.test(datos_filtrados$Accuracy)
##
## Anderson-Darling normality test
##
## data: datos_filtrados$Accuracy
## A = 2.2819, p-value = 8.389e-06
La variable no sigue una distribución normal, puesto que, el p valor
es menor al 0.05 y se rechaza la hipotesis nula.
### Precision:
ad.test(datos_filtrados$Precision)
##
## Anderson-Darling normality test
##
## data: datos_filtrados$Precision
## A = 2.2504, p-value = 1.002e-05
La variable no sigue una distribución normal, puesto que, el p valor
es menor al 0.05 y se rechaza la hipotesis nula.
### F1_Score:
ad.test(datos_filtrados$F1_Score)
##
## Anderson-Darling normality test
##
## data: datos_filtrados$F1_Score
## A = 1.8641, p-value = 8.906e-05
La variable no sigue una distribución normal, puesto que, el p valor
es menor al 0.05 y se rechaza la hipotesis nula.
### Training_Time:
ad.test(datos_filtrados$Training_Time)
##
## Anderson-Darling normality test
##
## data: datos_filtrados$Training_Time
## A = 2.0658, p-value = 2.844e-05
La variable no sigue una distribución normal, puesto que, el p valor
es menor al 0.05 y se rechaza la hipotesis nula.
### Recall:
ad.test(datos_filtrados$Recall)
##
## Anderson-Darling normality test
##
## data: datos_filtrados$Recall
## A = 1.6728, p-value = 0.0002633
La variable no sigue una distribución normal, puesto que, el p valor es menor al 0.05 y se rechaza la hipotesis nula.
En los siguientes graficos de cajas y bigotes, se comparara el desempeño de cada algoritmo de inteligencia artificial en problemas de Regresión, esta comparativa manejara unicamente los valores númericos:
Como queremos ver si hay diferencias significativas en las medias de F1 score de los 2 mejores algoritmos en tiempo de entrenamiento y con problemas de Regresión, utilizaremos intervalos de confianza para diferencia de medias. Además, se reforzará el análisis usando los gráficos de cajas y bigotes
Paso 1: Filtramos la base de datos para cada algoritmo con problemas de regresión, luego se calcula el tiempo promedio de entrenamiento y se imprimen los resultados para ver cuales son los 2 mejores.
## [1] "El promedio del tiempo de entrenamiento Neural Network en problemas de regresión es: 2.59562288262438"
## [1] "El promedio del tiempo de entrenamiento Random Forest en problemas de regresión es: 2.6725989949959"
## [1] "El promedio del tiempo de entrenamiento SVM en problemas de regresión es: 2.33723401069937"
## [1] "El promedio del tiempo de entrenamiento K-Means en problemas de regresión es: 2.57018451039694"
Notamos que los 2 mejores algoritmos con problemas de regresión en
orden del mejor al peor son: SVM y K-Means.
Paso 2: Se va a hacer un intervalo para la analizar la
diferencia de las medias. Para ello, usaremos vectores con los datos y
comprobaremos si las varianzas son iguales:
##
## F test to compare two variances
##
## data: K and SVM
## F = 1.2822, num df = 49, denom df = 51, p-value = 0.3811
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7329541 2.2502104
## sample estimates:
## ratio of variances
## 1.282212
Notemos que el p valor es mayor al 0.05, por lo tanto, se acepta la hipotesis nula de que las varianzas de los dos grupos son iguales.
Una vez comprobada la igualdad de las varianzas y la normalidad, procedemos a realizar el intervalo de la siguiente forma:
n1 <- length(K)
n2 <- length(SVM)
x_bar1 <- mean(K)
x_bar2 <- mean(SVM)
s1 <- sd(K)
s2 <- sd(SVM)
s_p <- sqrt(((n1 - 1) * s1^2 + (n2 - 1) * s2^2) / (n1 + n2 - 2))
alpha <- 0.05
z_alpha2 <- qnorm(1 - alpha/2)
se <- s_p * sqrt(1/n1 + 1/n2)
LI <- (x_bar1 - x_bar2) - z_alpha2 * se
LS <- (x_bar1 - x_bar2) + z_alpha2 * se
# Resultado
c(LI, LS)
## [1] -0.05278605 0.08372783
El intervalo arroja que el 0 se encuentra dentro, por lo cual se concluye que no hay suficiente evidencia para confirmar que las medias de los puntajes F1 son diferentes.
Además, analizaremos los gráficos de cajas y bigotes para notar las similutudes de los 2 grupos.
El boxplot compara el F1 Score de K-Means y SVM. K-Means tiene una
mediana cercana a 0.7 y mayor dispersión, mientras que SVM tiene una
mediana ligeramente más baja (~0.65) y menor variabilidad. Ambos
algoritmos presentan valores mínimos y máximos similares.
### Conclusión
Podemos concluir que no existen diferencias estadísticamente
significativas entre los valores medios de los grupos involucrados. Sin
embargo, se puede notar que SVM es el algoritmo más usado debido a que
tiene un menor tiempo de entrenamiento promedio.
Con esta base ya creada, surge la posibilidad de estudiar como es el desempeño de cada modelo en cada tipo de problema, tambien seria interesante investigar otros enfoques dentro del mismo tipo de problema, como por ejemplo indagar sobre que Algoritmo es capaz de presentar la meyor precision en el menor tiempo posible, ya que cada uno de estos modelos responde de manera diferente a cada problema.