FECHA: 24/01/2026
#INTEGRANTES: JUAN ARTEAGA, RONALD CARRERA, ANDRE LABANDA, ALEXANDER
SAILEMA
#INTRODUCCIÓN
#Planteamiento del problema:
#Las variaciones de las condiciones meteorológicas constituyen un fenómeno ambiental de gran importancia,
#ya que influyen directamente en los ecosistemas, los recursos hídricos y diversas actividades humanas.
#Con el paso del tiempo, factores como la temperatura, la precipitación, el viento y la radiación solar pueden presentar cambios significativos que afectan el equilibrio ambiental y climático.
#En este contexto, el uso de herramientas estadísticas permite analizar los datos meteorológicos registrados en la estación Antisana,
#identificando patrones y tendencias que contribuyen a comprender el comportamiento del clima y su impacto en el entorno natural durante el período de estudio.
#Mapa de Ubicación
library(magick)
library(cowplot)
img <- image_read("C:/Users/JOSUE/Downloads/ESTADISTICA/img/Mapa Antisana.jpeg")
ggdraw() + draw_image(img)

#Objetivo General
#Aplicar la estadística para el estudio de las variables meteorológicas registradas en la estación Antisana durante todo el año 2012, mediante el uso de herramientas para la medición, análisis e interpretación de datos climáticos.
#Objetivos Especificos
#Conocer el comportamiento de las variables meteorológicas registradas en la estación Antisana, identificando sus principales características mediante el uso de medidas estadísticas descriptivas.
#Emplear modelos de probabilidad para establecer conclusiones sobre la variabilidad de las condiciones meteorológicas a partir de los resultados obtenidos en la muestra analizada.
#Deducir relaciones entre las variables meteorológicas con el fin de realizar estimaciones y análisis que contribuyan a la interpretación del comportamiento climático en el período de estudio.
#Para esta base de datos las primeras variables no se ocupan ya que tienen valores constantes y se van a ocupar para hacer el mapa de ubicación
#así que se va a trabajar con las demás Variables para realizar el análisis estadístico.
#ESTADÍSTICA DESCRIPTIVA
#Poblacion
#Todos los días del año en la estación meteorológica Antisana.
#P={x∣x ∈ dias de registro meteorologico ∧ Estacion(x)="Antisana"}
#Individuo
#Cada día de registro meteorológico en la estación Antisana.
#Individuo: xi,i=1,2,3,…,n
#Muestra
#Los datos disponibles corresponden a una muestra de días registrados en la estación meteorológica Antisana durante el período observado.
#M={x∣x∈dıas de registro meteorologico ∧ Estacioˊn(x)="Antisana" ∧ Año(x)=2012}
#Tabla de variables
Tabla_de_variables<-read.csv("tabla_variables_Antisana.csv",header = TRUE,dec = ".",
sep = ";")
Tabla_de_variables
datos<-read.csv("weatherdataANTISANA.csv",header = TRUE,dec = ".",
sep = ",")
#Variables Cuantitativas continuas
# Temperatura Máxima
#Extracción Variable Cuantitativa Continua
Temp_max<- datos$Max.Temperature
min <-min(Temp_max)
max <-max(Temp_max)
R <-max-min
K <- floor(1+3.33*log10(length(Temp_max)))
A <-R/K
Li <-round(seq(from=min,to=max-A,by=A),2)
Ls <-round(seq(from=min+A,to=max,by=A),2)
Mc <-(Li+Ls)/2
ni<-c()
for (i in 1:K) {
if (i < K) {
ni[i] <- length(subset(Temp_max, Temp_max >= Li[i] & Temp_max < Ls[i]))
} else {
ni[i] <- length(subset(Temp_max, Temp_max >= Li[i] & Temp_max <= Ls[i]))
}
}
sum(ni)
## [1] 366
hi <-ni/sum(ni)*100
Ni_asc<-cumsum(ni)
Hi_asc<-cumsum(hi)
Ni_desc<-rev(cumsum(rev(ni)))
Hi_desc<-rev(cumsum(rev(hi)))
TDF_Temp_max <- data.frame(
Li, Ls, Mc, ni, round(hi, 2), Ni_asc, Ni_desc, round(Hi_asc, 2), round(Hi_desc, 2)
)
colnames(TDF_Temp_max) <- c("Li","Ls","Mc","ni","hi","Ni_asc","Ni_desc","Hi_asc(%)","Hi_desc(%)")
#Crear fila de totales
totales<-c(
Li="TOTAL",
Ls="-",
Mc="-",
ni=sum(ni),
hi=sum(hi),
Ni_asc="-",
Ni_desc="-",
Hi_asc="-",
Hi_desc="-")
TDF_Temp_max_final <-rbind(TDF_Temp_max,totales)
library(dplyr)
library(gt)
TDF_Temp_max_final %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 1"),
subtitle = md("*Tabla de distribución de la Temperatura Máxima (°C)*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 1 |
| Tabla de distribución de la Temperatura Máxima (°C) |
| Li |
Ls |
Mc |
ni |
hi |
Ni_asc |
Ni_desc |
Hi_asc(%) |
Hi_desc(%) |
| 10.32 |
11.82 |
11.07 |
26 |
7.1 |
26 |
366 |
7.1 |
100 |
| 11.82 |
13.31 |
12.565 |
60 |
16.39 |
86 |
340 |
23.5 |
92.9 |
| 13.31 |
14.81 |
14.06 |
71 |
19.4 |
157 |
280 |
42.9 |
76.5 |
| 14.81 |
16.31 |
15.56 |
60 |
16.39 |
217 |
209 |
59.29 |
57.1 |
| 16.31 |
17.8 |
17.055 |
62 |
16.94 |
279 |
149 |
76.23 |
40.71 |
| 17.8 |
19.3 |
18.55 |
44 |
12.02 |
323 |
87 |
88.25 |
23.77 |
| 19.3 |
20.8 |
20.05 |
23 |
6.28 |
346 |
43 |
94.54 |
11.75 |
| 20.8 |
22.29 |
21.545 |
14 |
3.83 |
360 |
20 |
98.36 |
5.46 |
| 22.29 |
23.79 |
23.04 |
6 |
1.64 |
366 |
6 |
100 |
1.64 |
| TOTAL |
- |
- |
366 |
100 |
- |
- |
- |
- |
| Autor: Grupo 3 |
# Histograma
histoT <- hist(
Temp_max,
main = "Gráfica Nº1: Distribución de la Temperatura Máxima",
xlab = "Temperatura Máxima(°C)",
ylab = "Cantidad",
col = "blue"
)

#Simplificación con el histograma
Hist_Temp_Max<-hist(Temp_max,breaks = 8,plot = F)
k<-length(Hist_Temp_Max$breaks)
Li<-Hist_Temp_Max$breaks[1:(length(Hist_Temp_Max$breaks)-1)]
Ls<-Hist_Temp_Max$breaks[2:length(Hist_Temp_Max$breaks)]
ni<-Hist_Temp_Max$counts
sum(ni)
## [1] 366
Mc<-Hist_Temp_Max$mids
hi<-(ni/sum(ni))
sum(hi)
## [1] 1
Ni_asc<-cumsum(ni)
Hi_asc<-cumsum(hi)
Ni_desc<-rev(cumsum(rev(ni)))
Hi_desc<-rev(cumsum(rev(hi)))
TDF_Temp_Maxima<-data.frame(Li=round(Li,2),
Ls=round(Ls,2),
Mc=round(Mc,2),
ni=ni,
hi=round(hi*100,2),
Ni_asc=Ni_asc,
Ni_desc=Ni_desc,
Hi_asc=round(Hi_asc*100,2),
Hi_desc=round(Hi_desc*100,2))
colnames(TDF_Temp_Maxima)<-c("Lim inf","Lim sup","MC","ni","hi(%)","Ni asc","Ni desc","Hi asc(%)","Hi desc(%)")
#Crear fila de totales
totales<-c(Li="TOTAL",
Ls="-",
Mc="-",
ni = sum(as.numeric(TDF_Temp_Maxima$ni)),
hi = sum(as.numeric(TDF_Temp_Maxima$hi)),
Ni_asc="-",
Ni_desc="-",
Hi_asc="-",
Hi_desc="-")
TDF_Temp_Maxima_final<-rbind(TDF_Temp_Maxima,totales)
library(dplyr)
library(gt)
TDF_Temp_Maxima_final %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 2"),
subtitle = md("*Tabla Simplificada de distribución de la Temperatura Máxima en el volcan Antisana*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 2 |
| Tabla Simplificada de distribución de la Temperatura Máxima en el volcan Antisana |
| Lim inf |
Lim sup |
MC |
ni |
hi(%) |
Ni asc |
Ni desc |
Hi asc(%) |
Hi desc(%) |
| 10 |
12 |
11 |
30 |
8.2 |
30 |
366 |
8.2 |
100 |
| 12 |
14 |
13 |
94 |
25.68 |
124 |
336 |
33.88 |
91.8 |
| 14 |
16 |
15 |
78 |
21.31 |
202 |
242 |
55.19 |
66.12 |
| 16 |
18 |
17 |
82 |
22.4 |
284 |
164 |
77.6 |
44.81 |
| 18 |
20 |
19 |
50 |
13.66 |
334 |
82 |
91.26 |
22.4 |
| 20 |
22 |
21 |
25 |
6.83 |
359 |
32 |
98.09 |
8.74 |
| 22 |
24 |
23 |
7 |
1.91 |
366 |
7 |
100 |
1.91 |
| TOTAL |
- |
- |
366 |
99.99 |
- |
- |
- |
- |
| Autor: Grupo 3 |
#Gráficas
hist(Temp_max, breaks = 10,
main = "Gráfica N°3 Distribución para la Temperatura Máxima en el Volcan Antisana ",
xlab = "Temperatura Máxima (°C)",
ylab = "Cantidad",
ylim = c(0,max(ni)),
col = "yellow",
cex.main = 0.9,
cex.lab = 1,
cex.axis = 0.9,
xaxt = "n")
axis(1, at = Hist_Temp_Max$breaks,
labels = Hist_Temp_Max$breaks, las = 1,
cex.axis = 0.9)

hist(Temp_max, breaks = 10,
main = "Gráfica N°4: Distribución de la Temperatura Máxima en el volcan Antisana ",
xlab = "Temperatura Máxima (°C)",
ylab = "Cantidad",
ylim = c(0, length(Temp_max)),
col = "green",
cex.main = 0.9,
cex.lab = 1,
cex.axis = 0.9,
xaxt = "n")
axis(1, at = Hist_Temp_Max$breaks,
labels = Hist_Temp_Max$breaks, las = 1,
cex.axis = 0.9)

TDF_Temp_Maxima_final$hi <- as.numeric(TDF_Temp_Maxima_final$hi)
datos_grafico <- subset(TDF_Temp_Maxima_final, !(MC %in% c("-", "TOTAL")))
barplot(datos_grafico$hi,
space = 0,
col = "blue",
main = "Gráfica N°5: Distribución porcentual de la Temperatura Máxima en el Volcan Antisana",
xlab = "Temperatura Máxima (°C)",
ylab = "Porcentaje (%)",
names.arg = datos_grafico$MC,
ylim = c(0, 30))

barplot(datos_grafico$hi,
space = 0,
col = "skyblue",
main = "Gráfica N°6: Distribución porcentual de la Temperatura Máxima en el Volcan Antisana",
xlab = "Temperatura °C",
ylab = "Porcentaje (%)",
names.arg = datos_grafico$MC,
ylim = c(0, 100))

# Boxplot
boxplot(
Temp_max,
horizontal = TRUE,
col = "pink",
main = "Gráfica Nº7: Distribución de la Temperatura Máxima",
xlab = "Temperatura Máxima (°C)",
outline = TRUE,
pch = 19
)

# Ojivas
plot(
Li, Ni_desc,
main = "Gráfica Nº8: Distribución Ascendente y Descendente de la Temperatura Máxima",
xlab = "Temperatura Máxima(°C)",
ylab = "Cantidad",
xlim = c(0, 100),
col = "red",
type = "o",
lwd = 3
)
lines(
Ls, Ni_asc,
col = "green",
type = "o",
lwd = 3
)

# Ojiva Porcentual
plot(
Li, Hi_desc,
main = "Gráfica Nº9: Distribución Ascendente y Descendente de la Temperatura Máxima",
xlab = "Temperatura Máxima (°C)",
ylab = "Porcentaje (%)",
xlim = c(0, 100),
col = "red",
type = "o",
lwd = 2
)
lines(
Ls, Hi_asc,
col = "blue",
type = "o",
lwd = 3
)

# INDICADORES ESTADISTICOS
# Indicadores de Tendencia Central
# Media aritmética
media <- round(mean(Temp_max), 0)
media
## [1] 16
# Moda
# Moda
max_frecuencia <- max(TDF_Temp_Maxima_final$ni)
moda <- TDF_Temp_Maxima_final$MC[TDF_Temp_Maxima_final$ni == max_frecuencia]
moda
## [1] "13"
# Mediana
mediana <- median(Temp_max)
mediana
## [1] 15.51
# INDICADORES DE DISPERSIÓN #
# Desviación Estándar
# Varianza
varianza <- var(Temp_max)
varianza
## [1] 8.222732
sd <- sd(Temp_max)
sd
## [1] 2.867531
# Coeficiente de Variación
cv <- round((sd / media) * 100, 2)
cv
## [1] 17.92
# INDICADORES DE FORMA #
# Coeficiente deAsimetría
library("e1071")
asimetria <- skewness(Temp_max, type = 2)
asimetria
## [1] 0.3905542
#Curtosis
curtosis <- kurtosis(Temp_max)
curtosis
## [1] -0.5581832
# TABLA RESUMEN FINAL
tabla_indicadores <- data.frame(
"Variable" = c("Temperatura Máxima"),
"Rango" = c(paste0("[", min(Temp_max), " ; ", max(Temp_max), "]")),
"X" = c(round(media, 0)),
"Me" = c(round(mediana, 0)),
"Mo" = c(paste(moda, collapse = ", ")),
"V" = c(round(varianza,2)),
"Sd" = c(round(sd, 0)),
"Cv" = c(cv),
"As" = c(round(asimetria, 2)),
"K" = c(round(curtosis, 2)),
"Valores Atípicos" = "-"
)
library(gt)
tabla_indicadores_gt <- tabla_indicadores %>%
gt() %>%
tab_header(
title = md("Tabla N°2.1"),
subtitle = md("*Indicadores estadísticos de la variable Temperatura Máxima*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black",
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black"
) %>%
tab_style(
style = cell_text(weight = "bold"),
locations = cells_body(
rows = Variable == "Temperatura Máxiima"
)
)
tabla_indicadores_gt
| Tabla N°2.1 |
| Indicadores estadísticos de la variable Temperatura Máxima |
| Variable |
Rango |
X |
Me |
Mo |
V |
Sd |
Cv |
As |
K |
Valores.Atípicos |
| Temperatura Máxima |
[10.32 ; 23.79] |
16 |
16 |
13 |
8.22 |
3 |
17.92 |
0.39 |
-0.56 |
- |
| Autor: Grupo 3 |
#Temperatura Mínima
Temp_min<- datos$Min.Temperature
min2 <-min(Temp_min)
max2 <-max(Temp_min)
R2 <-max2-min2
K2 <- floor(1+3.33*log10(length(Temp_min)))
A2 <-R2/K2
Li2 <-round(seq(from=min2,to=max2-A2,by=A2),2)
Ls2 <-round(seq(from=min2+A2,to=max2,by=A2),2)
Mc2 <-(Li2+Ls2)/2
ni2<-c()
for (i in 1:K2) {
if (i < K2) {
ni2[i] <- length(subset(Temp_min, Temp_min >= Li2[i] & Temp_min < Ls2[i]))
} else {
ni2[i] <- length(subset(Temp_min, Temp_min >= Li2[i] & Temp_min <= Ls2[i]))
}
}
sum(ni2)
## [1] 366
hi2 <-ni2/sum(ni2)*100
Ni_asc2<-cumsum(ni2)
Hi_asc2<-cumsum(hi2)
Ni_desc2<-rev(cumsum(rev(ni2)))
Hi_desc2<-rev(cumsum(rev(hi2)))
TDF_Temp_min <- data.frame(
Li2, Ls2, Mc2, ni2, round(hi2, 2), Ni_asc2, Ni_desc2, round(Hi_asc2, 2), round(Hi_desc2, 2)
)
colnames(TDF_Temp_min) <- c("Li","Ls","Mc","ni","hi","Ni_asc","Ni_desc","Hi_asc(%)","Hi_desc(%)")
#Crear fila de totales
totales<-c(
Li="TOTAL",
Ls="-",
Mc="-",
ni=sum(ni2),
hi=sum(hi2),
Ni_asc="-",
Ni_desc="-",
Hi_asc="-",
Hi_desc="-")
TDF_Temp_min_final <-rbind(TDF_Temp_min,totales)
library(dplyr)
library(gt)
TDF_Temp_min_final %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 3"),
subtitle = md("*Tabla de distribución de la Temperatura Mínima en el Volcan Antisana (°C)*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 3 |
| Tabla de distribución de la Temperatura Mínima en el Volcan Antisana (°C) |
| Li |
Ls |
Mc |
ni |
hi |
Ni_asc |
Ni_desc |
Hi_asc(%) |
Hi_desc(%) |
| 2.65 |
3.56 |
3.105 |
1 |
0.27 |
1 |
366 |
0.27 |
100 |
| 3.56 |
4.47 |
4.015 |
4 |
1.09 |
5 |
365 |
1.37 |
99.73 |
| 4.47 |
5.38 |
4.925 |
6 |
1.64 |
11 |
361 |
3.01 |
98.63 |
| 5.38 |
6.29 |
5.835 |
21 |
5.74 |
32 |
355 |
8.74 |
96.99 |
| 6.29 |
7.21 |
6.75 |
55 |
15.03 |
87 |
334 |
23.77 |
91.26 |
| 7.21 |
8.12 |
7.665 |
108 |
29.51 |
195 |
279 |
53.28 |
76.23 |
| 8.12 |
9.03 |
8.575 |
80 |
21.86 |
275 |
171 |
75.14 |
46.72 |
| 9.03 |
9.94 |
9.485 |
60 |
16.39 |
335 |
91 |
91.53 |
24.86 |
| 9.94 |
10.85 |
10.395 |
31 |
8.47 |
366 |
31 |
100 |
8.47 |
| TOTAL |
- |
- |
366 |
100 |
- |
- |
- |
- |
| Autor: Grupo 3 |
# Histograma
histoT <- hist(
Temp_min,
main = "Gráfica Nº10: Distribución de la Temperatura Mínima",
xlab = "Temperatura Mínima(°C)",
ylab = "Cantidad",
col = "blue"
)

#Simplificación con el histograma
Hist_Temp_Min<-hist(Temp_min,breaks = 8,plot = F)
k2<-length(Hist_Temp_Min$breaks)
Li2<-Hist_Temp_Min$breaks[1:(length(Hist_Temp_Min$breaks)-1)]
Ls2<-Hist_Temp_Min$breaks[2:length(Hist_Temp_Min$breaks)]
ni2<-Hist_Temp_Min$counts
sum(ni2)
## [1] 366
Mc2<-Hist_Temp_Min$mids
hi2<-(ni2/sum(ni2))
sum(hi2)
## [1] 1
Ni_asc2<-cumsum(ni2)
Hi_asc2<-cumsum(hi2)
Ni_desc2<-rev(cumsum(rev(ni2)))
Hi_desc2<-rev(cumsum(rev(hi2)))
TDF_Temp_Mínima<-data.frame(Li=round(Li2,2),
Ls=round(Ls2,2),
Mc=round(Mc2,2),
ni=ni2,
hi=round(hi2*100,2),
Ni_asc=Ni_asc2,
Ni_desc=Ni_desc2,
Hi_asc=round(Hi_asc2*100,2),
Hi_desc=round(Hi_desc2*100,2))
colnames(TDF_Temp_Mínima)<-c("Lim inf","Lim sup","MC","ni","hi(%)","Ni asc","Ni desc","Hi asc(%)","Hi desc(%)")
#Crear fila de totales
totales<- c(Li="TOTAL",
Ls="-",
Mc="-",
ni = sum(as.numeric(TDF_Temp_Mínima$ni)),
hi = sum(as.numeric(TDF_Temp_Mínima$hi)),
Ni_asc="-",
Ni_desc="-",
Hi_asc="-",
Hi_desc="-"
)
TDF_Temp_Mínima_final<-rbind(TDF_Temp_Mínima,totales)
library(dplyr)
library(gt)
TDF_Temp_Mínima_final %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 4"),
subtitle = md("*Tabla Simplificada de distribución de la Temperatura Mínima en el volcan Antisana*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 4 |
| Tabla Simplificada de distribución de la Temperatura Mínima en el volcan Antisana |
| Lim inf |
Lim sup |
MC |
ni |
hi(%) |
Ni asc |
Ni desc |
Hi asc(%) |
Hi desc(%) |
| 2 |
3 |
2.5 |
1 |
0.27 |
1 |
366 |
0.27 |
100 |
| 3 |
4 |
3.5 |
2 |
0.55 |
3 |
365 |
0.82 |
99.73 |
| 4 |
5 |
4.5 |
7 |
1.91 |
10 |
363 |
2.73 |
99.18 |
| 5 |
6 |
5.5 |
16 |
4.37 |
26 |
356 |
7.1 |
97.27 |
| 6 |
7 |
6.5 |
48 |
13.11 |
74 |
340 |
20.22 |
92.9 |
| 7 |
8 |
7.5 |
109 |
29.78 |
183 |
292 |
50 |
79.78 |
| 8 |
9 |
8.5 |
90 |
24.59 |
273 |
183 |
74.59 |
50 |
| 9 |
10 |
9.5 |
66 |
18.03 |
339 |
93 |
92.62 |
25.41 |
| 10 |
11 |
10.5 |
27 |
7.38 |
366 |
27 |
100 |
7.38 |
| TOTAL |
- |
- |
366 |
99.99 |
- |
- |
- |
- |
| Autor: Grupo 3 |
#Gráficas
hist(Temp_min, breaks = 10,
main = "Gráfica N°11 Distribución para la Temperatura Mínima en el Volcan Antisana ",
xlab = "Temperatura Mínima (°C)",
ylab = "Cantidad",
ylim = c(0,max(ni2)),
col = "yellow",
cex.main = 0.9,
cex.lab = 1,
cex.axis = 0.9,
xaxt = "n")
axis(1, at = Hist_Temp_Min$breaks,
labels = Hist_Temp_Min$breaks, las = 1,
cex.axis = 0.9)

hist(Temp_min, breaks = 10,
main = "Gráfica N°12: Distribución de la Temperatura Mínima en el volcan Antisana ",
xlab = "Temperatura Mínima (°C)",
ylab = "Cantidad",
ylim = c(0, length(Temp_min)),
col = "green",
cex.main = 0.9,
cex.lab = 1,
cex.axis = 0.9,
xaxt = "n")
axis(1, at = Hist_Temp_Min$breaks,
labels = Hist_Temp_Min$breaks, las = 1,
cex.axis = 0.9)

df <- TDF_Temp_min_final
df$hi <- as.numeric(df$hi)
datos_grafico <- df[1:(nrow(df)-1), ]
barplot(
datos_grafico$hi,
space = 0,
col = "blue",
main = "Gráfica N°13: Distribución porcentual de la Temperatura Mínima en el Volcán Antisana",
xlab = "Temperatura Mínima (°C)",
ylab = "Porcentaje (%)",
names.arg = datos_grafico$Mc, # si tu columna se llama MC, cámbialo por datos_grafico$MC
ylim = c(0, max(datos_grafico$hi, na.rm = TRUE) + 5)
)

datos_grafico$hi <- as.numeric(datos_grafico$hi)
sum(datos_grafico$hi)
## [1] 100
barplot(
datos_grafico$hi,
space = 0,
col = "skyblue",
main = "Gráfica N°14: Distribución porcentual de la Temperatura Mínima en el Volcán Antisana",
xlab = "Temperatura Mínima (°C)",
ylab = "Porcentaje (%)",
names.arg = datos_grafico$MC,
ylim = c(0, 100)
)

# Boxplot
boxplot(
Temp_min,
horizontal = TRUE,
col = "pink",
main = "Gráfica Nº15: Distribución de la Temperatura Mínima",
xlab = "Temperatura Mínima (°C)",
outline = TRUE,
pch = 19
)

# Ojivas
plot(
Li2, Ni_desc2,
main = "Gráfica Nº16: Distribución Ascendente y Descendente de la Temperatura Mínima",
xlab = "Temperatura Mínima(°C)",
ylab = "Cantidad",
xlim = c(0, 100),
col = "red",
type = "o",
lwd = 3
)
lines(
Ls2, Ni_asc2,
col = "green",
type = "o",
lwd = 3
)

# Ojiva Porcentual
plot(
Li2, Hi_desc2,
main = "Gráfica Nº17: Distribución Ascendente y Descendente de la Temperatura Mínima",
xlab = "Temperatura Mínima (°C)",
ylab = "Porcentaje (%)",
xlim = c(0, 100),
col = "red",
type = "o",
lwd = 2
)
lines(
Ls2, Hi_asc2,
col = "blue",
type = "o",
lwd = 3
)

# INDICADORES ESTADISTICOS
# Indicadores de Tendencia Central
# Media aritmética
media2 <- round(mean(Temp_min), 0)
media2
## [1] 8
# Moda
# Moda
max_frecuencia2 <- max(TDF_Temp_Mínima_final$ni)
moda2 <- TDF_Temp_Mínima_final$Mc[TDF_Temp_Mínima_final$ni == max_frecuencia2]
moda2
## NULL
# Mediana
mediana2 <- median(Temp_min)
mediana2
## [1] 8.005
# INDICADORES DE DISPERSIÓN #
# Desviación Estándar
# Varianza
varianza2 <- var(Temp_min)
varianza2
## [1] 1.888054
sd2 <- sd(Temp_min)
sd2
## [1] 1.374065
# Coeficiente de Variación
cv2 <- round((sd2 / media2) * 100, 2)
cv2
## [1] 17.18
# INDICADORES DE FORMA #
# Coeficiente deAsimetría
library("e1071")
asimetria2 <- skewness(Temp_min, type = 2)
asimetria2
## [1] -0.4376627
#Curtosis
curtosis2 <- kurtosis(Temp_min)
curtosis2
## [1] 0.5662281
# TABLA RESUMEN FINAL
tabla_indicadores2 <- data.frame(
"Variable" = c("Temperatura Mínima"),
"Rango" = c(paste0("[", min(Temp_min), " ; ", max(Temp_min), "]")),
"X" = c(round(media2, 0)),
"Me" = c(round(mediana2, 0)),
"Mo" = c(paste(moda2, collapse = ", ")),
"V" = c(round(varianza2,2)),
"Sd" = c(round(sd2, 0)),
"Cv" = c(cv2),
"As" = c(round(asimetria2, 2)),
"K" = c(round(curtosis2, 2)),
"Valores Atípicos" = "7"
)
library(gt)
tabla_indicadores_gt2 <- tabla_indicadores2 %>%
gt() %>%
tab_header(
title = md("Tabla N°3.1"),
subtitle = md("*Indicadores estadísticos de la variable Temperatura Mínima*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black",
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black"
) %>%
tab_style(
style = cell_text(weight = "bold"),
locations = cells_body(
rows = Variable == "Temperatura Mínima"
)
)
tabla_indicadores_gt2
#Precipitación
#Extracción Variable Cuantitativa Continua
Precipitacion<- datos$Precipitation
minp <-min(Precipitacion)
maxp <-max(Precipitacion)
Rp <-maxp-minp
Kp <- floor(1+3.33*log10(length(Precipitacion)))
Ap<-Rp/Kp
Lip <-round(seq(from=minp,to=maxp-Ap,by=Ap),2)
Lsp <-round(seq(from=minp+Ap,to=maxp,by=Ap),2)
Mcp <-(Lip+Lsp)/2
nip<-c()
for (i in 1:Kp) {
if (i < Kp) {
nip[i] <- length(subset(Precipitacion, Precipitacion >= Lip[i] & Precipitacion < Lsp[i]))
} else {
nip[i] <- length(subset(Precipitacion, Precipitacion >= Lip[i] & Precipitacion <= Lsp[i]))
}
}
sum(nip)
## [1] 366
hip <-nip/sum(nip)*100
Ni_ascp<-cumsum(nip)
Hi_ascp<-cumsum(hip)
Ni_descp<-rev(cumsum(rev(nip)))
Hi_descp<-rev(cumsum(rev(hip)))
TDF_Precipitacion <- data.frame(
Lip, Lsp, Mcp, nip, round(hip, 2), Ni_ascp, Ni_descp, round(Hi_ascp, 2), round(Hi_descp, 2)
)
colnames(TDF_Precipitacion) <- c("Li","Ls","Mc","ni","hi","Ni_asc","Ni_desc","Hi_asc(%)","Hi_desc(%)")
#Crear fila de totales
totales<-c(
Li="TOTAL",
Ls="-",
Mc="-",
ni=sum(nip),
hi=sum(hip),
Ni_asc="-",
Ni_desc="-",
Hi_asc="-",
Hi_desc="-")
TDF_Precipitacion_final <-rbind(TDF_Precipitacion,totales)
library(dplyr)
library(gt)
TDF_Precipitacion_final %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 5"),
subtitle = md("*Tabla de distribución de la Precipitación en el Volcan Antisana (mm)*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 5 |
| Tabla de distribución de la Precipitación en el Volcan Antisana (mm) |
| Li |
Ls |
Mc |
ni |
hi |
Ni_asc |
Ni_desc |
Hi_asc(%) |
Hi_desc(%) |
| 0.01 |
10.53 |
5.27 |
158 |
43.17 |
158 |
366 |
43.17 |
100 |
| 10.53 |
21.06 |
15.795 |
89 |
24.32 |
247 |
208 |
67.49 |
56.83 |
| 21.06 |
31.58 |
26.32 |
56 |
15.3 |
303 |
119 |
82.79 |
32.51 |
| 31.58 |
42.1 |
36.84 |
33 |
9.02 |
336 |
63 |
91.8 |
17.21 |
| 42.1 |
52.63 |
47.365 |
16 |
4.37 |
352 |
30 |
96.17 |
8.2 |
| 52.63 |
63.15 |
57.89 |
9 |
2.46 |
361 |
14 |
98.63 |
3.83 |
| 63.15 |
73.67 |
68.41 |
3 |
0.82 |
364 |
5 |
99.45 |
1.37 |
| 73.67 |
84.2 |
78.935 |
0 |
0 |
364 |
2 |
99.45 |
0.55 |
| 84.2 |
94.72 |
89.46 |
2 |
0.55 |
366 |
2 |
100 |
0.55 |
| TOTAL |
- |
- |
366 |
100 |
- |
- |
- |
- |
| Autor: Grupo 3 |
# Histograma
histoP <- hist(
Precipitacion,
main = "Gráfica Nº1: Distribución de la Precipitación en el Volcan Antisana",
xlab = "Precitación(°C)",
ylab = "Cantidad",
col = "blue"
)

#Simplificación con el histograma
Hist_Precipitacion<-hist(Precipitacion,breaks = 8,plot = F)
kp<-length(Hist_Precipitacion$breaks)
Lip<-Hist_Precipitacion$breaks[1:(length(Hist_Precipitacion$breaks)-1)]
Lsp<-Hist_Precipitacion$breaks[2:length(Hist_Precipitacion$breaks)]
nip<-Hist_Precipitacion$counts
sum(nip)
## [1] 366
Mcp<-Hist_Precipitacion$mids
hip<-(nip/sum(nip))
sum(hip)
## [1] 1
Ni_ascp<-cumsum(nip)
Hi_ascp<-cumsum(hip)
Ni_descp<-rev(cumsum(rev(nip)))
Hi_descp<-rev(cumsum(rev(hip)))
TDF_Precipitacion_F<-data.frame(Li=round(Lip,2),
Ls=round(Lsp,2),
Mc=round(Mcp,2),
ni=nip,
hi=round(hip*100,2),
Ni_asc=Ni_ascp,
Ni_desc=Ni_descp,
Hi_asc=round(Hi_ascp*100,2),
Hi_desc=round(Hi_descp*100,2))
colnames(TDF_Precipitacion_F)<-c("Lim inf","Lim sup","MC","ni","hi(%)","Ni asc","Ni desc","Hi asc(%)","Hi desc(%)")
#Crear fila de totales
totales<-c(Li="TOTAL",
Ls="-",
Mc="-",
ni = sum(as.numeric(TDF_Precipitacion_F$ni)),
hi = sum(as.numeric(TDF_Precipitacion_F$hi)),
Ni_asc="-",
Ni_desc="-",
Hi_asc="-",
Hi_desc="-")
TDF_Precipitacion_F<-rbind(TDF_Precipitacion_F,totales)
library(dplyr)
library(gt)
TDF_Precipitacion_F %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 6"),
subtitle = md("*Tabla Simplificada de distribución de la Precipitación en el volcan Antisana*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 6 |
| Tabla Simplificada de distribución de la Precipitación en el volcan Antisana |
| Lim inf |
Lim sup |
MC |
ni |
hi(%) |
Ni asc |
Ni desc |
Hi asc(%) |
Hi desc(%) |
| 0 |
10 |
5 |
150 |
40.98 |
150 |
366 |
40.98 |
100 |
| 10 |
20 |
15 |
92 |
25.14 |
242 |
216 |
66.12 |
59.02 |
| 20 |
30 |
25 |
58 |
15.85 |
300 |
124 |
81.97 |
33.88 |
| 30 |
40 |
35 |
27 |
7.38 |
327 |
66 |
89.34 |
18.03 |
| 40 |
50 |
45 |
23 |
6.28 |
350 |
39 |
95.63 |
10.66 |
| 50 |
60 |
55 |
10 |
2.73 |
360 |
16 |
98.36 |
4.37 |
| 60 |
70 |
65 |
4 |
1.09 |
364 |
6 |
99.45 |
1.64 |
| 70 |
80 |
75 |
0 |
0 |
364 |
2 |
99.45 |
0.55 |
| 80 |
90 |
85 |
1 |
0.27 |
365 |
2 |
99.73 |
0.55 |
| 90 |
100 |
95 |
1 |
0.27 |
366 |
1 |
100 |
0.27 |
| TOTAL |
- |
- |
366 |
99.99 |
- |
- |
- |
- |
| Autor: Grupo 3 |
#Gráficas
hist(Precipitacion, breaks = 10,
main = "Gráfica N°3 Distribución para la Precipitación en el Volcan Antisana ",
xlab = "Precipitación (mm)",
ylab = "Cantidad",
ylim = c(0,max(nip)),
col = "yellow",
cex.main = 0.9,
cex.lab = 1,
cex.axis = 0.9,
xaxt = "n")
axis(1, at = Hist_Precipitacion$breaks,
labels = Hist_Precipitacion$breaks, las = 1,
cex.axis = 0.9)

hist(Precipitacion, breaks = 10,
main = "Gráfica N°4: Distribución de la Precipitacion en el volcan Antisana ",
xlab = "Precipitación (mm)",
ylab = "Cantidad",
ylim = c(0, length(Precipitacion)),
col = "green",
cex.main = 0.9,
cex.lab = 1,
cex.axis = 0.9,
xaxt = "n")
axis(1, at = Hist_Precipitacion$breaks,
labels = Hist_Precipitacion$breaks, las = 1,
cex.axis = 0.9)

TDF_Precipitacion_F$hi <- as.numeric(TDF_Precipitacion_F$hi)
datos_grafico <- TDF_Precipitacion_F[1:(nrow(TDF_Precipitacion_F) - 1), ]
barplot(
datos_grafico$hi,
space = 0,
col = "blue",
main = "Gráfica N°5: Distribución porcentual de la Precipitación en el Volcán Antisana",
xlab = "Precipitación (mm)",
ylab = "Porcentaje (%)",
names.arg = datos_grafico$Mcp,
ylim = c(0, max(datos_grafico$hi) + 5)
)

datos_grafico$hi <- as.numeric(datos_grafico$hi)
barplot(
datos_grafico$hi,
space = 0,
col = "skyblue",
main = "Gráfica N°6: Distribución porcentual de la Precipitación en el Volcán Antisana",
xlab = "Precipitación (mm)",
ylab = "Porcentaje (%)",
names.arg = datos_grafico$Mcp,
ylim = c(0, 100)
)

# Boxplot
boxplot(
Precipitacion,
horizontal = TRUE,
col = "pink",
main = "Gráfica Nº7: Distribución de la Precipitación",
xlab = "Precipitación (mm)",
outline = TRUE,
pch = 19
)

# Ojivas
plot(
Lip, Ni_descp,
main = "Gráfica Nº8: Distribución Ascendente y Descendente de la Precipitación",
xlab = "Precipitación(mm)",
ylab = "Cantidad",
xlim = c(0, 100),
col = "red",
type = "o",
lwd = 3
)
lines(
Lsp, Ni_ascp,
col = "green",
type = "o",
lwd = 3
)

# Ojiva Porcentual
plot(
Lip, Hi_descp,
main = "Gráfica Nº9: Distribución Ascendente y Descendente de la Precipitación",
xlab = "Precipitación(mm)",
ylab = "Porcentaje (%)",
xlim = c(0, 100),
col = "red",
type = "o",
lwd = 2
)
lines(
Lsp, Hi_ascp,
col = "blue",
type = "o",
lwd = 3
)

# INDICADORES ESTADISTICOS
# Indicadores de Tendencia Central
# Media aritmética
mediap <- round(mean(Precipitacion), 0)
mediap
## [1] 17
# Moda
max_frecuenciap <- max(TDF_Precipitacion_F$ni)
modap <- TDF_Precipitacion_F$MC[TDF_Precipitacion_F$ni == max_frecuenciap]
modap
## [1] "15"
# Mediana
medianap <- median(Precipitacion)
medianap
## [1] 12.94
# INDICADORES DE DISPERSIÓN #
# Desviación Estándar
# Varianza
varianzap <- var(Precipitacion)
varianzap
## [1] 259.6987
sdp <- sd(Precipitacion)
sdp
## [1] 16.11517
# Coeficiente de Variación
cvp <- round((sdp / mediap) * 100, 2)
cvp
## [1] 94.8
# INDICADORES DE FORMA #
# Coeficiente deAsimetría
library("e1071")
asimetriap <- skewness(Precipitacion, type = 2)
asimetriap
## [1] 1.305768
#Curtosis
curtosisp <- kurtosis(Precipitacion)
curtosisp
## [1] 1.951113
# TABLA RESUMEN FINAL
tabla_indicadoresp <- data.frame(
"Variable" = c("Precipitación"),
"Rango" = c(paste0("[", min(Precipitacion), " ; ", max(Precipitacion), "]")),
"X" = c(round(mediap, 0)),
"Me" = c(round(medianap, 0)),
"Mo" = c(paste(modap, collapse = ", ")),
"V" = c(round(varianzap,2)),
"Sd" = c(round(sdp, 0)),
"Cv" = c(cvp),
"As" = c(round(asimetriap, 2)),
"K" = c(round(curtosisp, 2)),
"Valores Atípicos" = "8"
)
library(gt)
tabla_indicadores_gtp <- tabla_indicadoresp %>%
gt() %>%
tab_header(
title = md("Tabla N°4.1"),
subtitle = md("*Indicadores estadísticos de la variable Precipitación*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black",
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black"
) %>%
tab_style(
style = cell_text(weight = "bold"),
locations = cells_body(
rows = Variable == "Precipitación"
)
)
tabla_indicadores_gtp
| Tabla N°4.1 |
| Indicadores estadísticos de la variable Precipitación |
| Variable |
Rango |
X |
Me |
Mo |
V |
Sd |
Cv |
As |
K |
Valores.Atípicos |
| Precipitación |
[0.01 ; 94.72] |
17 |
13 |
15 |
259.7 |
16 |
94.8 |
1.31 |
1.95 |
8 |
| Autor: Grupo 3 |
#Viento
Viento<- datos$Wind
minV <-min(Viento)
maxV <-max(Viento)
RV <-maxV-minV
KV <- floor(1+3.33*log10(length(Viento)))
AV<-RV/KV
LiV <-round(seq(from=minV,to=maxV-AV,by=AV),2)
LsV <-round(seq(from=minV+AV,to=maxV,by=AV),2)
McV <-(LiV+LsV)/2
niV<-c()
for (i in 1:KV) {
if (i < KV) {
niV[i] <- length(subset(Viento, Viento >= LiV[i] & Viento < LsV[i]))
} else {
niV[i] <- length(subset(Viento, Viento >= LiV[i] & Viento <= LsV[i]))
}
}
sum(niV)
## [1] 366
hiV <-niV/sum(niV)*100
Ni_ascV<-cumsum(niV)
Hi_ascV<-cumsum(hiV)
Ni_descV<-rev(cumsum(rev(niV)))
Hi_descV<-rev(cumsum(rev(hiV)))
TDF_Viento <- data.frame(
LiV, LsV, McV, niV, round(hiV, 2), Ni_ascV, Ni_descV, round(Hi_ascV, 2), round(Hi_descV, 2)
)
colnames(TDF_Viento) <- c("Li","Ls","Mc","ni","hi","Ni_asc","Ni_desc","Hi_asc(%)","Hi_desc(%)")
#Crear fila de totales
totales<-c(
Li="TOTAL",
Ls="-",
Mc="-",
ni=sum(niV),
hi=sum(hiV),
Ni_asc="-",
Ni_desc="-",
Hi_asc="-",
Hi_desc="-")
TDF_Viento_final <-rbind(TDF_Viento,totales)
library(dplyr)
library(gt)
TDF_Viento_final %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 7"),
subtitle = md("*Tabla de distribución del Viento en el Volcan Antisana *")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 7 |
| *Tabla de distribución del Viento en el Volcan Antisana * |
| Li |
Ls |
Mc |
ni |
hi |
Ni_asc |
Ni_desc |
Hi_asc(%) |
Hi_desc(%) |
| 0.59 |
0.86 |
0.725 |
2 |
0.55 |
2 |
366 |
0.55 |
100 |
| 0.86 |
1.12 |
0.99 |
23 |
6.28 |
25 |
364 |
6.83 |
99.45 |
| 1.12 |
1.39 |
1.255 |
56 |
15.3 |
81 |
341 |
22.13 |
93.17 |
| 1.39 |
1.66 |
1.525 |
78 |
21.31 |
159 |
285 |
43.44 |
77.87 |
| 1.66 |
1.92 |
1.79 |
71 |
19.4 |
230 |
207 |
62.84 |
56.56 |
| 1.92 |
2.19 |
2.055 |
62 |
16.94 |
292 |
136 |
79.78 |
37.16 |
| 2.19 |
2.46 |
2.325 |
48 |
13.11 |
340 |
74 |
92.9 |
20.22 |
| 2.46 |
2.72 |
2.59 |
23 |
6.28 |
363 |
26 |
99.18 |
7.1 |
| 2.72 |
2.99 |
2.855 |
3 |
0.82 |
366 |
3 |
100 |
0.82 |
| TOTAL |
- |
- |
366 |
100 |
- |
- |
- |
- |
| Autor: Grupo 3 |
# Histograma
histoV <- hist(
Viento,
main = "Gráfica Nº1: Distribución del Viento en el Volcan Antisana",
xlab = "Viento(m/s)",
ylab = "Cantidad",
col = "blue"
)

#Simplificación con el histograma
Hist_Viento<-hist(Viento,breaks = 8,plot = F)
kV<-length(Hist_Viento$breaks)
LiV<-Hist_Viento$breaks[1:(length(Hist_Viento$breaks)-1)]
LsV<-Hist_Viento$breaks[2:length(Hist_Viento$breaks)]
niV<-Hist_Viento$counts
sum(niV)
## [1] 366
McV<-Hist_Viento$mids
hiV<-(niV/sum(niV))
sum(hiV)
## [1] 1
Ni_ascV<-cumsum(niV)
Hi_ascV<-cumsum(hiV)
Ni_descV<-rev(cumsum(rev(niV)))
Hi_descV<-rev(cumsum(rev(hiV)))
TDF_Viento_F<-data.frame(Li=round(LiV,2),
Ls=round(LsV,2),
Mc=round(McV,2),
ni=niV,
hi=round(hiV*100,2),
Ni_asc=Ni_ascV,
Ni_desc=Ni_descV,
Hi_asc=round(Hi_ascV*100,2),
Hi_desc=round(Hi_descV*100,2))
colnames(TDF_Viento_F)<-c("Lim inf","Lim sup","MC","ni","hi(%)","Ni asc","Ni desc","Hi asc(%)","Hi desc(%)")
#Crear fila de totales
totales<-c(Li="TOTAL",
Ls="-",
Mc="-",
ni = sum(as.numeric(TDF_Viento_F$ni)),
hi = sum(as.numeric(TDF_Viento_F$hi)),
Ni_asc="-",
Ni_desc="-",
Hi_asc="-",
Hi_desc="-")
TDF_Viento_F<-rbind(TDF_Viento_F,totales)
library(dplyr)
library(gt)
TDF_Viento_F %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 8"),
subtitle = md("*Tabla Simplificada de distribución del Viento en el volcan Antisana*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 8 |
| Tabla Simplificada de distribución del Viento en el volcan Antisana |
| Lim inf |
Lim sup |
MC |
ni |
hi(%) |
Ni asc |
Ni desc |
Hi asc(%) |
Hi desc(%) |
| 0.5 |
1 |
0.75 |
12 |
3.28 |
12 |
366 |
3.28 |
100 |
| 1 |
1.5 |
1.25 |
107 |
29.23 |
119 |
354 |
32.51 |
96.72 |
| 1.5 |
2 |
1.75 |
130 |
35.52 |
249 |
247 |
68.03 |
67.49 |
| 2 |
2.5 |
2.25 |
96 |
26.23 |
345 |
117 |
94.26 |
31.97 |
| 2.5 |
3 |
2.75 |
21 |
5.74 |
366 |
21 |
100 |
5.74 |
| TOTAL |
- |
- |
366 |
100 |
- |
- |
- |
- |
| Autor: Grupo 3 |
#Gráficas
hist(Viento, breaks = 10,
main = "Gráfica N°3 Distribución para el Viento en el Volcan Antisana ",
xlab = "Viento (m/S)",
ylab = "Cantidad",
ylim = c(0,max(niV)),
col = "yellow",
cex.main = 0.9,
cex.lab = 1,
cex.axis = 0.9,
xaxt = "n")
axis(1, at = Hist_Viento$breaks,
labels = Hist_Viento$breaks, las = 1,
cex.axis = 0.9)

hist(Viento, breaks = 10,
main = "Gráfica N°4: Distribución del Viento en el volcan Antisana ",
xlab = "Viento (m/s)",
ylab = "Cantidad",
ylim = c(0, length(Viento)),
col = "green",
cex.main = 0.9,
cex.lab = 1,
cex.axis = 0.9,
xaxt = "n")
axis(1, at = Hist_Viento$breaks,
labels = Hist_Viento$breaks, las = 1,
cex.axis = 0.9)

TDF_Viento_F$`hi(%)` <- as.numeric(TDF_Viento_F$`hi(%)`)
datos_grafico_Viento <- TDF_Viento_F[1:(nrow(TDF_Viento_F)-1), ]
post <- barplot(datos_grafico_Viento$`hi(%)`,
space = 0,
col = "blue",
main = "Gráfica N°5: Distribución porcentual del viento en el volcán Antisana",
xlab = "Viento (m/s)",
ylab = "Porcentaje (%)",
ylim = c(0, max(datos_grafico_Viento$`hi(%)`) + 5))
axis(1, at = post, labels = datos_grafico_Viento$MC, las = 1, cex.axis = 0.8)

datos_grafico_Viento$hi <- as.numeric(datos_grafico_Viento$hi)
barplot(
datos_grafico_Viento$hi,
space = 0,
col = "skyblue",
main = "Gráfica N°6: Distribución porcentual de la Precipitación en el Volcán Antisana",
xlab = "Viento (m/S)",
ylab = "Porcentaje (%)",
names.arg = datos_grafico_Viento$McV,
ylim = c(0, 100)
)

# Boxplot
boxplot(
Viento,
horizontal = TRUE,
col = "pink",
main = "Gráfica Nº7: Distribución del Viento",
xlab = "Viento (m/S)",
outline = TRUE,
pch = 19
)

# Ojivas
plot(
LiV, Ni_descV,
main = "Gráfica Nº8: Distribución Ascendente y Descendente del Viento",
xlab = " Viento (m/S)",
ylab = "Cantidad",
xlim = c(0, 100),
col = "red",
type = "o",
lwd = 3
)
lines(
LsV, Ni_ascV,
col = "green",
type = "o",
lwd = 3
)

# Ojiva Porcentual
plot(
LiV, Hi_descV,
main = "Gráfica Nº9: Distribución Ascendente y Descendente del Viento",
xlab = " Viento",
ylab = "Porcentaje (%)",
xlim = c(0, 100),
col = "red",
type = "o",
lwd = 2
)
lines(
LsV, Hi_ascV,
col = "blue",
type = "o",
lwd = 3
)

# INDICADORES ESTADISTICOS
# Indicadores de Tendencia Central
# Media aritmética
mediav <- round(mean(Viento), 0)
mediav
## [1] 2
# Moda
max_frecuenciav <- max(TDF_Viento_F$ni)
modaV <- TDF_Viento_F$MC[TDF_Viento_F$ni == max_frecuenciav]
modaV
## [1] "2.25"
# Mediana
medianaV <- median(Viento)
medianaV
## [1] 1.75
# INDICADORES DE DISPERSIÓN #
# Desviación Estándar
# Varianza
varianzaV <- var(Viento)
varianzaV
## [1] 0.2077148
sdV <- sd(Viento)
sdV
## [1] 0.4557574
# Coeficiente de Variación
cvV <- round((sdV / mediav) * 100, 2)
cvV
## [1] 22.79
# INDICADORES DE FORMA #
# Coeficiente deAsimetría
library("e1071")
asimetriaV <- skewness(Viento, type = 2)
asimetriaV
## [1] 0.1112888
#Curtosis
curtosisV <- kurtosis(Viento)
curtosisV
## [1] -0.719341
# TABLA RESUMEN FINAL
tabla_indicadoresV <- data.frame(
"Variable" = c("Viento"),
"Rango" = c(paste0("[", min(Viento), " ; ", max(Viento), "]")),
"X" = c(round(mediav, 0)),
"Me" = c(round(medianaV, 0)),
"Mo" = c(paste(modaV, collapse = ", ")),
"V" = c(round(varianzaV,2)),
"Sd" = c(round(sdV, 0)),
"Cv" = c(cvV),
"As" = c(round(asimetriaV, 2)),
"K" = c(round(curtosisV, 2)),
"Valores Atípicos" = "-"
)
library(gt)
tabla_indicadores_gtV <- tabla_indicadoresV %>%
gt() %>%
tab_header(
title = md("Tabla N°8.1"),
subtitle = md("*Indicadores estadísticos de la variable Viento*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black",
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black"
) %>%
tab_style(
style = cell_text(weight = "bold"),
locations = cells_body(
rows = Variable == "Precipitación"
)
)
tabla_indicadores_gtV
| Tabla N°8.1 |
| Indicadores estadísticos de la variable Viento |
| Variable |
Rango |
X |
Me |
Mo |
V |
Sd |
Cv |
As |
K |
Valores.Atípicos |
| Viento |
[0.59 ; 2.99] |
2 |
2 |
2.25 |
0.21 |
0 |
22.79 |
0.11 |
-0.72 |
- |
| Autor: Grupo 3 |
# Humead Relativa
Humedad<- datos$Relative.Humidity
minH <-min(Humedad)
maxH <-max(Humedad)
RH <-maxH-minH
KH <- floor(1+3.33*log10(length(Humedad)))
AH<-RH/KH
LiH <-round(seq(from=minH,to=maxH-AH,by=AH),2)
LsH <-round(seq(from=minH+AH,to=maxH,by=AH),2)
McH <-(LiH+LsH)/2
niH<-c()
for (i in 1:KH) {
if (i < KH) {
niH[i] <- length(subset(Humedad, Humedad >= LiH[i] & Humedad< LsH[i]))
} else {
niH[i] <- length(subset(Humedad, Humedad >= LiH[i] & Humedad <= LsH[i]))
}
}
sum(niH)
## [1] 366
hiH <-niH/sum(niH)*100
Ni_ascH<-cumsum(niH)
Hi_ascH<-cumsum(hiH)
Ni_descH<-rev(cumsum(rev(niH)))
Hi_descH<-rev(cumsum(rev(hiH)))
TDF_Humedad <- data.frame(
LiH, LsH, McH, niH, round(hiH, 2), Ni_ascH, Ni_descH, round(Hi_ascH, 2), round(Hi_descH, 2)
)
colnames(TDF_Humedad) <- c("Li","Ls","Mc","ni","hi","Ni_asc","Ni_desc","Hi_asc(%)","Hi_desc(%)")
#Crear fila de totales
totales<-c(
Li="TOTAL",
Ls="-",
Mc="-",
ni=sum(niH),
hi=sum(hiH),
Ni_asc="-",
Ni_desc="-",
Hi_asc="-",
Hi_desc="-")
TDF_Humedad_final <-rbind(TDF_Humedad,totales)
library(dplyr)
library(gt)
TDF_Humedad_final %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 9"),
subtitle = md("*Tabla de distribución de la Humedad Relativa en el Volcan Antisana *")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 9 |
| *Tabla de distribución de la Humedad Relativa en el Volcan Antisana * |
| Li |
Ls |
Mc |
ni |
hi |
Ni_asc |
Ni_desc |
Hi_asc(%) |
Hi_desc(%) |
| 0.56 |
0.61 |
0.585 |
2 |
0.55 |
2 |
366 |
0.55 |
100 |
| 0.61 |
0.66 |
0.635 |
15 |
4.1 |
17 |
364 |
4.64 |
99.45 |
| 0.66 |
0.7 |
0.68 |
16 |
4.37 |
33 |
349 |
9.02 |
95.36 |
| 0.7 |
0.75 |
0.725 |
20 |
5.46 |
53 |
333 |
14.48 |
90.98 |
| 0.75 |
0.8 |
0.775 |
19 |
5.19 |
72 |
313 |
19.67 |
85.52 |
| 0.8 |
0.85 |
0.825 |
20 |
5.46 |
92 |
294 |
25.14 |
80.33 |
| 0.85 |
0.89 |
0.87 |
28 |
7.65 |
120 |
274 |
32.79 |
74.86 |
| 0.89 |
0.94 |
0.915 |
53 |
14.48 |
173 |
246 |
47.27 |
67.21 |
| 0.94 |
0.99 |
0.965 |
193 |
52.73 |
366 |
193 |
100 |
52.73 |
| TOTAL |
- |
- |
366 |
100 |
- |
- |
- |
- |
| Autor: Grupo 3 |
# Histograma
histoH <- hist(
Humedad,
main = "Gráfica Nº1: Distribución de la Humedad Relativa en el Volcan Antisana",
xlab = "Humedad(%)",
ylab = "Cantidad",
col = "blue"
)

#Simplificación con el histograma
Hist_Humedad<-hist(Humedad,breaks = 8,plot = F)
kH<-length(Hist_Viento$breaks)
LiH<-Hist_Humedad$breaks[1:(length(Hist_Humedad$breaks)-1)]
LsH<-Hist_Humedad$breaks[2:length(Hist_Humedad$breaks)]
niH<-Hist_Humedad$counts
sum(niH)
## [1] 366
McH<-Hist_Humedad$mids
hiH<-(niH/sum(niH))
sum(hiH)
## [1] 1
Ni_ascH<-cumsum(niH)
Hi_ascH<-cumsum(hiH)
Ni_descH<-rev(cumsum(rev(niH)))
Hi_descH<-rev(cumsum(rev(hiH)))
TDF_Humedad_F<-data.frame(Li=round(LiH,2),
Ls=round(LsH,2),
Mc=round(McH,2),
ni=niH,
hi=round(hiH*100,2),
Ni_asc=Ni_ascH,
Ni_desc=Ni_descH,
Hi_asc=round(Hi_ascH*100,2),
Hi_desc=round(Hi_descH*100,2))
colnames(TDF_Humedad_F)<-c("Lim inf","Lim sup","MC","ni","hi(%)","Ni asc","Ni desc","Hi asc(%)","Hi desc(%)")
#Crear fila de totales
totales<-c(Li="TOTAL",
Ls="-",
Mc="-",
ni = sum(as.numeric(TDF_Humedad_F$ni)),
hi = sum(as.numeric(TDF_Humedad_F$hi)),
Ni_asc="-",
Ni_desc="-",
Hi_asc="-",
Hi_desc="-")
TDF_Humedad_F<-rbind(TDF_Humedad_F,totales)
library(dplyr)
library(gt)
TDF_Humedad_F %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 10"),
subtitle = md("*Tabla Simplificada de distribución de la Humedad Relativa en el volcan Antisana*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 10 |
| Tabla Simplificada de distribución de la Humedad Relativa en el volcan Antisana |
| Lim inf |
Lim sup |
MC |
ni |
hi(%) |
Ni asc |
Ni desc |
Hi asc(%) |
Hi desc(%) |
| 0.55 |
0.6 |
0.58 |
2 |
0.55 |
2 |
366 |
0.55 |
100 |
| 0.6 |
0.65 |
0.62 |
15 |
4.1 |
17 |
364 |
4.64 |
99.45 |
| 0.65 |
0.7 |
0.68 |
18 |
4.92 |
35 |
349 |
9.56 |
95.36 |
| 0.7 |
0.75 |
0.73 |
21 |
5.74 |
56 |
331 |
15.3 |
90.44 |
| 0.75 |
0.8 |
0.78 |
18 |
4.92 |
74 |
310 |
20.22 |
84.7 |
| 0.8 |
0.85 |
0.83 |
25 |
6.83 |
99 |
292 |
27.05 |
79.78 |
| 0.85 |
0.9 |
0.88 |
41 |
11.2 |
140 |
267 |
38.25 |
72.95 |
| 0.9 |
0.95 |
0.92 |
59 |
16.12 |
199 |
226 |
54.37 |
61.75 |
| 0.95 |
1 |
0.98 |
167 |
45.63 |
366 |
167 |
100 |
45.63 |
| TOTAL |
- |
- |
366 |
100.01 |
- |
- |
- |
- |
| Autor: Grupo 3 |
#Gráficas
hist(Humedad, breaks = 10,
main = "Gráfica N°3 Distribución para la Humedad Relativa en el Volcan Antisana ",
xlab = "Humedad Relativa (%)",
ylab = "Cantidad",
ylim = c(0,max(niH)),
col = "yellow",
cex.main = 0.9,
cex.lab = 1,
cex.axis = 0.9,
xaxt = "n")
axis(1, at = Hist_Humedad$breaks,
labels = Hist_Humedad$breaks, las = 1,
cex.axis = 0.9)

hist(Humedad, breaks = 10,
main = "Gráfica N°4: Distribución de la Humedad Relativa en el volcan Antisana ",
xlab = "Humedad Relativa (%)",
ylab = "Cantidad",
ylim = c(0, length(Humedad)),
col = "green",
cex.main = 0.9,
cex.lab = 1,
cex.axis = 0.9,
xaxt = "n")
axis(1, at = Hist_Humedad$breaks,
labels = Hist_Humedad$breaks, las = 1,
cex.axis = 0.9)

TDF_Humedad_F$hi <- as.numeric(TDF_Humedad_F$hi)
datos_grafico <- subset(TDF_Humedad_F, !(McH %in% c("-", "TOTAL")))
barplot(datos_grafico$hi,
space = 0,
col = "blue",
main = "Gráfica N°5: Distribución porcentual de la Humedad Relativa en el Volcan Antisana",
xlab = "Humedad (%)",
ylab = "Porcentaje (%)",
names.arg = datos_grafico$McH,
ylim = c(0, 100))

barplot(datos_grafico$hi,
space = 0,
col = "skyblue",
main = "Gráfica N°6: Distribución porcentual de de la Humedad Relativa en el Volcan Antisana",
xlab = "Humedad (%)",
ylab = "Porcentaje (%)",
names.arg = datos_grafico$McH,
ylim = c(0, 100))

# Boxplot
boxplot(
Humedad,
horizontal = TRUE,
col = "pink",
main = "Gráfica Nº7: Distribución de la Humedad Relativa",
xlab = "Humedad Relativa (%)",
outline = TRUE,
pch = 19
)

# Ojivas
plot(
LiH, Ni_descH,
main = "Gráfica Nº8: Distribución Ascendente y Descendente de la Humedad Relativa",
xlab = " Humedad Relativa (%)",
ylab = "Cantidad",
xlim = c(0, 10),
col = "red",
type = "o",
lwd = 3
)
lines(
LsH, Ni_ascH,
col = "green",
type = "o",
lwd = 3
)

# Ojiva Porcentual
plot(
LiH, Hi_descH,
main = "Gráfica Nº9: Distribución Ascendente y Descendente de la Humedad Relativa",
xlab = " Humedad (%)",
ylab = "Porcentaje (%)",
xlim = c(0, 10),
col = "red",
type = "o",
lwd = 2
)
lines(
LsH, Hi_ascH,
col = "blue",
type = "o",
lwd = 3
)

# INDICADORES ESTADISTICOS
# Indicadores de Tendencia Central
# Media aritmética
mediaH <- round(mean(Humedad), 0)
mediaH
## [1] 1
# Moda
max_frecuenciaH <- max(TDF_Humedad_F$ni)
modaH <- TDF_Humedad_F$MC[TDF_Humedad_F$ni == max_frecuenciaH]
modaH
## [1] "0.92"
# Mediana
medianaH <- median(Humedad)
medianaH
## [1] 0.94
# INDICADORES DE DISPERSIÓN #
# Desviación Estándar
# Varianza
varianzaH <- var(Humedad)
varianzaH
## [1] 0.0118026
sdH <- sd(Humedad)
sdH
## [1] 0.1086398
# Coeficiente de Variación
cvH <- round((sdH / mediaH) * 100, 2)
cvH
## [1] 10.86
# INDICADORES DE FORMA #
# Coeficiente deAsimetría
library("e1071")
asimetriaH <- skewness(Humedad, type = 2)
asimetriaH
## [1] -1.186766
#Curtosis
curtosisH <- kurtosis(Humedad)
curtosisH
## [1] 0.2001903
# TABLA RESUMEN FINAL
tabla_indicadoresH <- data.frame(
"Variable" = c("Viento"),
"Rango" = c(paste0("[", min(Humedad), " ; ", max(Humedad), "]")),
"X" = c(round(mediaH, 0)),
"Me" = c(round(medianaH, 0)),
"Mo" = c(paste(modaH, collapse = ", ")),
"V" = c(round(varianzaH,2)),
"Sd" = c(round(sdH, 0)),
"Cv" = c(cvH),
"As" = c(round(asimetriaH, 2)),
"K" = c(round(curtosisH, 2)),
"Valores Atípicos" = "3"
)
library(gt)
tabla_indicadores_gtH <- tabla_indicadoresH %>%
gt() %>%
tab_header(
title = md("Tabla N°10.1"),
subtitle = md("*Indicadores estadísticos de la variable Humedad*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black",
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black"
) %>%
tab_style(
style = cell_text(weight = "bold"),
locations = cells_body(
rows = Variable == "Precipitación"
)
)
tabla_indicadores_gtH
| Tabla N°10.1 |
| Indicadores estadísticos de la variable Humedad |
| Variable |
Rango |
X |
Me |
Mo |
V |
Sd |
Cv |
As |
K |
Valores.Atípicos |
| Viento |
[0.56 ; 0.99] |
1 |
1 |
0.92 |
0.01 |
0 |
10.86 |
-1.19 |
0.2 |
3 |
| Autor: Grupo 3 |
#Radiación Solar
Radiacion<- datos$Solar
minS <-min(Radiacion)
maxS <-max(Radiacion)
RS <-maxS-minS
KS <- floor(1+3.33*log10(length(Radiacion)))
AS<-RS/KS
LiS <-round(seq(from=minS,to=maxS-AS,by=AS),2)
LsS <-round(seq(from=minS+AS,to=maxS,by=AS),2)
McS <-(LiS+LsS)/2
niS<-c()
for (i in 1:KS) {
if (i < KS) {
niS[i] <- length(subset(Radiacion, Radiacion >= LiS[i] & Radiacion< LsS[i]))
} else {
niS[i] <- length(subset(Radiacion, Radiacion >= LiS[i] & Radiacion <= LsS[i]))
}
}
sum(niS)
## [1] 366
hiS <-niS/sum(niS)*100
Ni_ascS<-cumsum(niS)
Hi_ascS<-cumsum(hiS)
Ni_descS<-rev(cumsum(rev(niS)))
Hi_descS<-rev(cumsum(rev(hiS)))
TDF_Radiacion <- data.frame(
LiS, LsS, McS, niS, round(hiS, 2), Ni_ascS, Ni_descS, round(Hi_ascS, 2), round(Hi_descS, 2)
)
colnames(TDF_Radiacion) <- c("Li","Ls","Mc","ni","hi","Ni_asc","Ni_desc","Hi_asc(%)","Hi_desc(%)")
#Crear fila de totales
totales<-c(
Li="TOTAL",
Ls="-",
Mc="-",
ni=sum(niS),
hi=sum(hiS),
Ni_asc="-",
Ni_desc="-",
Hi_asc="-",
Hi_desc="-")
TDF_Radiacion_final <-rbind(TDF_Radiacion,totales)
library(dplyr)
library(gt)
TDF_Radiacion_final %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 11"),
subtitle = md("*Tabla de distribución de la Radiación Solar en el Volcan Antisana *")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 11 |
| *Tabla de distribución de la Radiación Solar en el Volcan Antisana * |
| Li |
Ls |
Mc |
ni |
hi |
Ni_asc |
Ni_desc |
Hi_asc(%) |
Hi_desc(%) |
| 1.26 |
4.48 |
2.87 |
40 |
10.93 |
40 |
366 |
10.93 |
100 |
| 4.48 |
7.71 |
6.095 |
57 |
15.57 |
97 |
326 |
26.5 |
89.07 |
| 7.71 |
10.93 |
9.32 |
55 |
15.03 |
152 |
269 |
41.53 |
73.5 |
| 10.93 |
14.15 |
12.54 |
55 |
15.03 |
207 |
214 |
56.56 |
58.47 |
| 14.15 |
17.38 |
15.765 |
30 |
8.2 |
237 |
159 |
64.75 |
43.44 |
| 17.38 |
20.6 |
18.99 |
17 |
4.64 |
254 |
129 |
69.4 |
35.25 |
| 20.6 |
23.82 |
22.21 |
35 |
9.56 |
289 |
112 |
78.96 |
30.6 |
| 23.82 |
27.05 |
25.435 |
48 |
13.11 |
337 |
77 |
92.08 |
21.04 |
| 27.05 |
30.27 |
28.66 |
29 |
7.92 |
366 |
29 |
100 |
7.92 |
| TOTAL |
- |
- |
366 |
100 |
- |
- |
- |
- |
| Autor: Grupo 3 |
# Histograma
histoS<- hist(
Radiacion,
main = "Gráfica Nº1: Distribución de la Radiacion Solar en el Volcan Antisana",
xlab = "Radiación (J/m2)",
ylab = "Cantidad",
col = "blue"
)

#Simplificación con el histograma
Hist_Radiacion<-hist(Radiacion,breaks = 8,plot = F)
kS<-length(Hist_Radiacion$breaks)
LiS<-Hist_Radiacion$breaks[1:(length(Hist_Radiacion$breaks)-1)]
LsS<-Hist_Radiacion$breaks[2:length(Hist_Radiacion$breaks)]
niS<-Hist_Radiacion$counts
sum(niS)
## [1] 366
McS<-Hist_Radiacion$mids
hiS<-(niS/sum(niS))
sum(hiS)
## [1] 1
Ni_ascS<-cumsum(niS)
Hi_ascS<-cumsum(hiS)
Ni_descS<-rev(cumsum(rev(niS)))
Hi_descS<-rev(cumsum(rev(hiS)))
TDF_Radiacion_F<-data.frame(Li=round(LiS,2),
Ls=round(LsS,2),
Mc=round(McS,2),
ni=niS,
hi=round(hiS*100,2),
Ni_asc=Ni_ascS,
Ni_desc=Ni_descS,
Hi_asc=round(Hi_ascS*100,2),
Hi_desc=round(Hi_descS*100,2))
colnames(TDF_Radiacion_F)<-c("Lim inf","Lim sup","MC","ni","hi(%)","Ni asc","Ni desc","Hi asc(%)","Hi desc(%)")
#Crear fila de totales
totales<-c(Li="TOTAL",
Ls="-",
Mc="-",
ni = sum(as.numeric(TDF_Radiacion_F$ni)),
hi = sum(as.numeric(TDF_Radiacion_F$hi)),
Ni_asc="-",
Ni_desc="-",
Hi_asc="-",
Hi_desc="-")
TDF_Radiacion_F<-rbind(TDF_Radiacion_F,totales)
library(dplyr)
library(gt)
TDF_Radiacion_F %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 11"),
subtitle = md("*Tabla Simplificada de distribución de la Radiacion Solar en el volcan Antisana*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 11 |
| Tabla Simplificada de distribución de la Radiacion Solar en el volcan Antisana |
| Lim inf |
Lim sup |
MC |
ni |
hi(%) |
Ni asc |
Ni desc |
Hi asc(%) |
Hi desc(%) |
| 0 |
5 |
2.5 |
51 |
13.93 |
51 |
366 |
13.93 |
100 |
| 5 |
10 |
7.5 |
86 |
23.5 |
137 |
315 |
37.43 |
86.07 |
| 10 |
15 |
12.5 |
79 |
21.58 |
216 |
229 |
59.02 |
62.57 |
| 15 |
20 |
17.5 |
33 |
9.02 |
249 |
150 |
68.03 |
40.98 |
| 20 |
25 |
22.5 |
57 |
15.57 |
306 |
117 |
83.61 |
31.97 |
| 25 |
30 |
27.5 |
58 |
15.85 |
364 |
60 |
99.45 |
16.39 |
| 30 |
35 |
32.5 |
2 |
0.55 |
366 |
2 |
100 |
0.55 |
| TOTAL |
- |
- |
366 |
100 |
- |
- |
- |
- |
| Autor: Grupo 3 |
#Gráficas
hist(Radiacion, breaks = 10,
main = "Gráfica N°3 Distribución para la Radiacion Solar Relativa en el Volcan Antisana ",
xlab = "Radiación Solar (J/m2)",
ylab = "Cantidad",
ylim = c(0,max(niS)),
col = "yellow",
cex.main = 0.9,
cex.lab = 1,
cex.axis = 0.9,
xaxt = "n")
axis(1, at = Hist_Radiacion$breaks,
labels = Hist_Radiacion$breaks, las = 1,
cex.axis = 0.9)

hist(Radiacion, breaks = 10,
main = "Gráfica N°4: Distribución de la Radiación Solar en el volcan Antisana ",
xlab = "Radiación Solar (J/m2)",
ylab = "Cantidad",
ylim = c(0, length(Radiacion)),
col = "green",
cex.main = 0.9,
cex.lab = 1,
cex.axis = 0.9,
xaxt = "n")
axis(1, at = Hist_Radiacion$breaks,
labels = Hist_Radiacion$breaks, las = 1,
cex.axis = 0.9)

TDF_Radiacion_F$hi <- as.numeric(TDF_Radiacion_F$hi)
datos_grafico <- TDF_Radiacion_F[1:(nrow(TDF_Radiacion_F) - 1), ]
barplot(
datos_grafico$hi,
space = 0,
col = "blue",
main = "Gráfica N°5: Distribución porcentual de la Radiación Solar en el Volcán Antisana",
xlab = "Radiación Solar (J/m²)",
ylab = "Porcentaje (%)",
names.arg = datos_grafico$McS,
ylim = c(0, max(datos_grafico$hi) + 5)
)

datos_grafico$hi <- as.numeric(datos_grafico$hi)
hi_100 <- datos_grafico$hi / max(datos_grafico$hi) * 100
barplot(
hi_100,
space = 0,
col = "skyblue",
main = "Gráfica N°6: Distribución porcentual de la Radiación Solar en el Volcán Antisana",
xlab = "Radiación Solar (J/m²)",
ylab = "Porcentaje relativo (%)",
names.arg = datos_grafico$McS,
ylim = c(0, 100)
)

# Boxplot
boxplot(
Radiacion,
horizontal = TRUE,
col = "pink",
main = "Gráfica Nº7: Distribución de la Radiación Solar",
xlab = "Radiación Solar (J/m2)",
outline = TRUE,
pch = 19
)

# Ojivas
plot(
LiS, Ni_descS,
main = "Gráfica Nº8: Distribución Ascendente y Descendente de la Radiación Solar",
xlab = " Radiación Solar (J/m2)",
ylab = "Cantidad",
xlim = c(0, 100),
col = "red",
type = "o",
lwd = 3
)
lines(
LsS, Ni_ascS,
col = "green",
type = "o",
lwd = 3
)

# Ojiva Porcentual
plot(
LiS, Hi_descS,
main = "Gráfica Nº9: Distribución Ascendente y Descendente de la Radiación Solar",
xlab = " Radiación Solar (J/m2)",
ylab = "Porcentaje (%)",
xlim = c(0,100),
col = "red",
type = "o",
lwd = 2
)
lines(
LsS, Hi_ascS,
col = "blue",
type = "o",
lwd = 3
)

# INDICADORES ESTADISTICOS
# Indicadores de Tendencia Central
# Media aritmética
mediaS <- round(mean(Radiacion), 0)
mediaS
## [1] 14
# Moda
max_frecuenciaS <- max(TDF_Radiacion_F$ni)
modaS <- TDF_Radiacion_F$McS[TDF_Radiacion_F$ni == max_frecuenciaS]
modaS
## NULL
# Mediana
medianaS <- median(Radiacion)
medianaS
## [1] 12.655
# INDICADORES DE DISPERSIÓN #
# Desviación Estándar
# Varianza
varianzaS <- var(Radiacion)
varianzaS
## [1] 69.3595
sdS <- sd(Radiacion)
sdS
## [1] 8.328235
# Coeficiente de Variación
cvS <- round((sdS / mediaS) * 100, 2)
cvS
## [1] 59.49
# INDICADORES DE FORMA #
# Coeficiente deAsimetría
library("e1071")
asimetriaS <- skewness(Radiacion, type = 2)
asimetriaS
## [1] 0.2996237
#Curtosis
curtosiss <- kurtosis(Radiacion)
curtosiss
## [1] -1.244028
# TABLA RESUMEN FINAL
tabla_indicadoresS <- data.frame(
"Variable" = c("Viento"),
"Rango" = c(paste0("[", min(Radiacion), " ; ", max(Radiacion), "]")),
"X" = c(round(mediaS, 0)),
"Me" = c(round(medianaS, 0)),
"Mo" = c(paste(modaS, collapse = ", ")),
"V" = c(round(varianzaS,2)),
"Sd" = c(round(sdS, 0)),
"Cv" = c(cvS),
"As" = c(round(asimetriaS, 2)),
"K" = c(round(curtosiss, 2)),
"Valores Atípicos" = "-"
)
library(gt)
tabla_indicadores_gtS <- tabla_indicadoresS %>%
gt() %>%
tab_header(
title = md("Tabla N°12.1"),
subtitle = md("*Indicadores estadísticos de la variable Radiación Solar*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black",
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black"
) %>%
tab_style(
style = cell_text(weight = "bold"),
locations = cells_body(
rows = Variable == "Precipitación"
)
)
tabla_indicadores_gtS
| Tabla N°12.1 |
| Indicadores estadísticos de la variable Radiación Solar |
| Variable |
Rango |
X |
Me |
Mo |
V |
Sd |
Cv |
As |
K |
Valores.Atípicos |
| Viento |
[1.26 ; 30.27] |
14 |
13 |
|
69.36 |
8 |
59.49 |
0.3 |
-1.24 |
- |
| Autor: Grupo 3 |
#MODELO DE DISTRIBUCUIÓN NORMAL
#PASO 1: ESCOGER LA VARIABLE Y JUSTIFICAR POR QUE ES CONTINUA
#La variable velocidad del viento es una variable continua ya que puede tomar cualquier valor real, incluido decimales dentro
#de un intervalo determinado ya que su dominio es : D={x|x ∈ R+,0}, excepto valores negativos ya que esta variable no puede
#ser negativa
#PASO 2: TABLA DE DISTRIBUCIÓN DE FRECUENCIA
Viento <- datos$Wind
Hist_Viento <- hist(Viento, breaks = 8, plot = FALSE)
LiV <- Hist_Viento$breaks[-length(Hist_Viento$breaks)]
LsV <- Hist_Viento$breaks[-1]
niV <- Hist_Viento$counts
hiV <- (niV / sum(niV)) * 100
TDF_Viento_simple <- data.frame(
Lim_inf = round(LiV, 2),
Lim_sup = round(LsV, 2),
ni = niV,
hi_pct = round(hiV, 2)
)
TDF_Viento_simple <- rbind(
TDF_Viento_simple,
data.frame(Lim_inf = "Totales", Lim_sup = "", ni = sum(niV), hi_pct = 100)
)
library(gt)
TDF_Viento_simple %>%
gt() %>%
cols_label(
Lim_inf = "Lim inf",
Lim_sup = "Lim sup",
ni = "ni",
hi_pct = "hi (%)"
) %>%
fmt_number(columns = c(ni), decimals = 0) %>%
fmt_number(columns = c(hi_pct), decimals = 2) %>%
tab_header(
title = md("Tabla Nro. 8"),
subtitle = md("*Tabla simplificada de distribución del viento en el volcán Antisana*")
) %>%
tab_source_note(source_note = md("Autor: Grupo 3")) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 8 |
| Tabla simplificada de distribución del viento en el volcán Antisana |
| Lim inf |
Lim sup |
ni |
hi (%) |
| 0.5 |
1 |
12 |
3.28 |
| 1 |
1.5 |
107 |
29.23 |
| 1.5 |
2 |
130 |
35.52 |
| 2 |
2.5 |
96 |
26.23 |
| 2.5 |
3 |
21 |
5.74 |
| Totales |
|
366 |
100.00 |
| Autor: Grupo 3 |
#PASO 3: HISTOGRAMA
datos_grafico_Viento$hi <- as.numeric(datos_grafico_Viento$hi)
barplot(
datos_grafico_Viento$hi,
space = 0,
col = "skyblue",
main = "Gráfica N°6: Distribución porcentual de la Precipitación en el Volcán Antisana",
xlab = "Viento (m/S)",
ylab = "Porcentaje (%)",
names.arg = datos_grafico_Viento$McV,
ylim = c(0, 100)
)

#PASO 4: CONJETURA
#Gracias a la grafica de barras podemos asumir que las barras se comportan como un modelo de distribución normal
#PASO 5: CÁLCULO DE PARAMETROS
U <- mean(Viento)
U
## [1] 1.767787
Sigma <- sd(Viento)
Sigma
## [1] 0.4557574
#PASO 6 : GRÁFICA DE REALIDAD COMPARADA CON EL MODELO
breaks <- hist(Viento, breaks = 8, plot = FALSE)$breaks
hist(Viento,
breaks = breaks,
freq = FALSE,
main = "Gráfica N°2: Comparación modelo normal con la realidad de la velocidad del viento Estudio en el volcán Antisana)",
xlab = "Viento (m/s)",
ylab = "Densidad de probabilidad",
col = "lightblue",
xlim = range(breaks)
)
axis(1, at = breaks)
x <- seq(min(Viento, na.rm = TRUE), max(Viento, na.rm = TRUE), by = 0.01)
lines(x, dnorm(x, mean = U, sd = Sigma), lwd = 3, col = "black")

#PASO 7: TESTS DE BONDAD
#PASO 7.1: TEST DE PEARSON
#Frecuencia observada
FoV<-as.numeric(table(cut(Viento, breaks = breaks, include.lowest = TRUE)))
FoV
## [1] 12 107 130 96 21
nV <- length(Viento)
pV <- diff(pnorm(breaks, mean = U, sd = Sigma))
# Fe = Probabilidad * n
FeV <- pV * nV
FeV
## [1] 15.85712 85.05226 152.39889 91.91160 18.53558
CorrelaciónV<-cor(FoV,FeV)*100
CorrelaciónV
## [1] 96.0468
#PASO 7.2: TEST DE CHI CUADRADO
breaks_chi <- quantile(Viento, probs = seq(0, 1, length.out = 6))
chi2 <- sum((FoV - FeV)^2 / FeV)
chi2
## [1] 10.40343
k <- length(FoV)
gl <- kV - 1 - 2
gl
## [1] 3
umbrall_aceptacion <- qchisq(0.999, df = gl)
umbrall_aceptacion
## [1] 16.26624
chi2 < umbrall_aceptacion
## [1] TRUE
#PASO 8: CÁLCULO DE PROBABILIDADES
#¿Cuál es la probabilidad de que en 2027 la velocidad del viento en el volcán Antisana esté entre 1.8 y 2.2 m/s?
pnorm(2.2, U, Sigma) - pnorm(1.8, U, Sigma)
## [1] 0.3003479
#¿Cuál es la probabilidad de que en 2030 la velocidad del viento en el volcán Antisana sea mayor o igual a 2.5 m/s?
1 - pnorm(2.5, U, Sigma)
## [1] 0.05407269
# 9. INTERVALO DE CONFIANZA
media <-mean(Viento)
sigma<-sd(Viento)
n<-length(Viento)
error<- 2*(sigma/sqrt(n))
#Límites intevalo de cofianza
lim_infer<- round(media-error,2)
lim_super<- round(media+error,2)
tabla_intervalo <- data.frame(Intervalo = "P [1.72< µ < 1.82] = 95%")
tabla_intervalo %>%
gt() %>%
tab_header(
title = md("*Tabla Nro. 2*"),
subtitle = md("**Intervalo de confianza del viento en el estudio del clima en el volcán Antisana en 2012 **")
) %>%
tab_source_note(
source_note = md("Autor: GRUPO 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black")
| Tabla Nro. 2 |
| **Intervalo de confianza del viento en el estudio del clima en el volcán Antisana en 2012 ** |
| Intervalo |
| P [1.72< µ < 1.82] = 95% |
| Autor: GRUPO 3 |
# PASO 10: CONCLUSIÓN
# La variable Velocidad del Viento en (m/s) se explica con un modelo normal con parametro µ= 1,76 y σ= 0.45 y
#podemos afirmar con el 95% de confianza que la media aritmética de está variable se encuentra entre 1.71 y 1.82 (m/s)
#con una desviación estándar de 0.455 (m/s).
#MODELO EXPONENCIAL
#PASO 1: DEFINIR LA VARIABLE DE INTERÉS
#La variable precipitación (mm) es continua porque su dominio corresponde al conjunto de los números reales no negativos incluido el cero.
#Esto se debe a que la cantidad de lluvia puede tomar infinitos valores posibles dentro de un intervalo.
precipitación<-datos$Precipitation
#PASO 2: TABLA DE DISTRIBUCIÓN DE FRECUENCIAS
Histograma_precipitación<-hist(precipitación,plot=FALSE)
breaks <- Histograma_precipitación$breaks
Li <- breaks[1:(length(breaks)-1)]
Ls <- breaks[2:length(breaks)]
ni<-Histograma_precipitación$counts
n<-length(precipitación)
hi <- (ni / n) * 100
TDF_precipitacion <- data.frame(
Intervalo = paste0("[", round(Li,2), " - ", round(Ls,2), ")"),
ni = ni,
hi= round(hi, 2)
)
colnames(TDF_precipitacion) <- c(
"Intervalo",
"ni",
"hi(%)"
)
totaless <- data.frame(
Intervalo = "Totales",
ni = sum(ni),
hi = sum(hi)
)
colnames(totaless) <- c(
"Intervalo",
"ni",
"hi(%)"
)
TDF_precipitacion <- rbind(TDF_precipitacion, totaless)
TDF_precipitacion %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 1"),
subtitle = md("*Distribucion de frecuencia simplificado de la precipitación, estudio del clima volcán Antisana en 2012 *")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 1 |
| *Distribucion de frecuencia simplificado de la precipitación, estudio del clima volcán Antisana en 2012 * |
| Intervalo |
ni |
hi(%) |
| [0 - 10) |
150 |
40.98 |
| [10 - 20) |
92 |
25.14 |
| [20 - 30) |
58 |
15.85 |
| [30 - 40) |
27 |
7.38 |
| [40 - 50) |
23 |
6.28 |
| [50 - 60) |
10 |
2.73 |
| [60 - 70) |
4 |
1.09 |
| [70 - 80) |
0 |
0.00 |
| [80 - 90) |
1 |
0.27 |
| [90 - 100) |
1 |
0.27 |
| Totales |
366 |
100.00 |
| Autor: Grupo 3 |
#PASO 3: HISTOGRAMA
TDF_precipitacion$hi <- as.numeric(TDF_precipitacion$`hi(%)`)
TDF_precipitacion_graf <- TDF_precipitacion[TDF_precipitacion$Intervalo != "Totales", ]
par(mar = c(9, 5, 4, 2))
post <- barplot(
TDF_precipitacion_graf$hi,
space = 0,
col = "blue",
ylim = c(0, 100),
xaxt = "n",
ylab = "Porcentaje",
main = "Gráfica N°1:Distribución de la precipitación en el estudio
del clima en el volcán Antisana en 2012"
)
axis(
side = 1,
at = post,
labels = TDF_precipitacion_graf$Intervalo,
las = 2,
cex.axis = 0.8
)
mtext(
"Precipitación (mm)",
side = 1,
line = 7
)

#PASO 4: CONJETURA DE MODELO
#MI VARIABLE Y SUS BARRAS SE COMPORTAN COMO UN MODELO DE DISTRIBUCIÓN EXPONENCIAL
# 5. CÁLCULO DE PARÁMETROS DISTRIBUCIÓN EXPONELCIAL
media_exp <- mean(precipitación)
media_exp
## [1] 17.10478
lambda<-1/media_exp
lambda
## [1] 0.05846318
Histograma_precipitación <- hist(precipitación,
breaks = breaks,
freq = FALSE,
main = "Gráfica Nº2: Comparación modelo exponelcial realidad de la precipitación\n en el estudio del clima en el volcán Antisana",
xlab = " Precipitación (mm)",
ylab = "Densidad probabilidad ",
col = "lightblue", ylim = c(0,0.06),xaxt = "n"
)
axis(1, at = breaks)
# Curva exponencial
curve(dexp(x,rate = lambda),
from = 0, to = 100,
col = "orange", lwd = 2, add = TRUE)

#PASO 6: APLICACIÓN DE TESTS
#PASO 6.1: Test de Pearson
fo <- hist(precipitación, breaks=breaks, plot=FALSE)$counts
fo
## [1] 150 92 58 27 23 10 4 0 1 1
n <- length(precipitación)
p <- diff(pexp(breaks, rate=lambda))
fe <- p * n
fe
## [1] 162.0241746 90.2978545 50.3239874 28.0461117 15.6304065 8.7109974
## [7] 4.8547347 2.7055970 1.5078590 0.8403464
Correlación<-cor(fo,fe)*100
Correlación
## [1] 99.55797
#PASO 6.2 Test Chi-cuadrado
x2 <- sum((fo - fe)^2 / fe)
x2
## [1] 8.857184
k <- length(fo)
grados_libertad <- k - 2
grados_libertad
## [1] 8
umbral_aceptacion <- qchisq(0.95, df = grados_libertad)
umbral_aceptacion
## [1] 15.50731
x2<umbral_aceptacion
## [1] TRUE
#PASO 7: CÁLCULO DE PROBABILIDADES
#¿Cuál es la probabilidad de que la precipitación esté entre 20 y 50 mm en un día cualquiera?
probabilidad_20_50 <- pexp(50, rate = lambda) - pexp(20, rate = lambda)
probabilidad_20_50 * 100
## [1] 25.6832
#PASO 8: INTERVALO DE CONFIANZĀ
media <-mean(precipitación)
sigma<-sd(precipitación)
n<-length(precipitación)
error<- 2*(sigma/sqrt(n))
#Límites intevalo de cofianza
limite_inferior<- round(media-error,2)
limite_superior<- round(media+error,2)
tabla_intervalo <- data.frame(Intervalo = "P [15.42< µ < 18.79] = 95%")
tabla_intervalo %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 2"),
subtitle = md("*Intervalo de confianza de las precipitaciones en el estudio del clima en el volcán Antisana en 2012 *")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 2 |
| *Intervalo de confianza de las precipitaciones en el estudio del clima en el volcán Antisana en 2012 * |
| Intervalo |
| P [15.42< µ < 18.79] = 95% |
| Autor: Grupo 3 |
# PASO 9: CONCLUSIÓN
# La variable precipitación (mm) sigue o se explica con un modelo exponencial con parametro λ= 0.058 y
#podemos afirmar con 95% de confianza que la media aritmetica de está variable se encuentra entre 15.42 y 18.79 (mm)
#con una desviación estándar de 16.115 (mm).
#MODELO LOG NORMAL
#PASO 1: ESCOGER LA VARIABLE Y JUSTIFICAR POR QUE ES CONTINUA
#La temperatura mínima es una variable cuantitativa continua porque puede tomar cualquier valor real, incluidos decimales
#ya sean positivos o negativos ya que su dominio es D={x|x ∈ R}.
#PASO 2: TABLA DE DISTRIBUCIÓN DE FRECUENCIA
Temp_min<- datos$Min.Temperature
Hist_Temp_Min<-hist(Temp_min,breaks = 8,plot = F)
k2<-length(Hist_Temp_Min$breaks)
Li2<-Hist_Temp_Min$breaks[1:(length(Hist_Temp_Min$breaks)-1)]
Ls2<-Hist_Temp_Min$breaks[2:length(Hist_Temp_Min$breaks)]
ni2<-Hist_Temp_Min$counts
sum(ni2)
## [1] 366
hi2<-(ni2/sum(ni2))
sum(hi2)
## [1] 1
TDF_Temp_Mínima_Simple<-data.frame(Li=round(Li2,2),
Ls=round(Ls2,2),
ni=ni2,
hi=round(hi2*100,2))
colnames(TDF_Temp_Mínima_Simple)<-c("Lim inf","Lim sup","ni","hi(%)")
#Crear fila de totales
totales<- c(Li="TOTAL",
Ls="-",
ni = sum(as.numeric(TDF_Temp_Mínima_Simple$ni)),
hi = sum(as.numeric(TDF_Temp_Mínima_Simple$hi))
)
TDF_Temp_Mínima_Simple<-rbind(TDF_Temp_Mínima_Simple,totales)
library(dplyr)
library(gt)
TDF_Temp_Mínima_Simple %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 1"),
subtitle = md("*Tabla Simplificada de distribución de la Temperatura Mínima en el volcan Antisana*")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 1 |
| Tabla Simplificada de distribución de la Temperatura Mínima en el volcan Antisana |
| Lim inf |
Lim sup |
ni |
hi(%) |
| 2 |
3 |
1 |
0.27 |
| 3 |
4 |
2 |
0.55 |
| 4 |
5 |
7 |
1.91 |
| 5 |
6 |
16 |
4.37 |
| 6 |
7 |
48 |
13.11 |
| 7 |
8 |
109 |
29.78 |
| 8 |
9 |
90 |
24.59 |
| 9 |
10 |
66 |
18.03 |
| 10 |
11 |
27 |
7.38 |
| TOTAL |
- |
366 |
99.99 |
| Autor: Grupo 3 |
#PASO 3: HISTOGRAMA
df <- TDF_Temp_min_final
df$hi <- as.numeric(df$hi)
datos_grafico <- df[1:(nrow(df)-1), ]
datos_grafico$hi <- as.numeric(datos_grafico$hi)
sum(datos_grafico$hi)
## [1] 100
barplot(
datos_grafico$hi,
space = 0,
col = "skyblue",
main = "Gráfica N°14: Distribución porcentual de la Temperatura Mínima en el Volcán Antisana",
xlab = "Temperatura Mínima (°C)",
ylab = "Porcentaje (%)",
names.arg = datos_grafico$MC,
ylim = c(0, 100)
)

#PASO 4: CONJETURA
# La variable temperatura mínima y sus barras se comportan como un modelo log normal, los valores más altos se encuentran
#en la parte media con una desviación a la derecha y los valores bajos se extienden hacia la parte izquierda, y concluimos
#que se comporta como un modelo log normal con sesgo hacia la izquierda.
#PASO 5: CÁLCULO DE PARÁMETROS
temp <- Temp_min
temp <- temp[is.finite(temp)] # por si hay NA/Inf
temp_pos <- temp[temp > 0]
log_temp <- log(temp_pos)
ulog <- mean(log_temp, na.rm = TRUE)
sigmalog <- sd(log_temp, na.rm = TRUE)
breaks <- hist(temp_pos, breaks = 8, plot = FALSE)$breaks
xlim <- range(breaks)
#PASO 6: GRÁFICA REALIDAD EN COMPARACIÓN CON EL MODELO LOG NORMAL
hist(
temp_pos,
breaks = breaks,
freq = FALSE,
col = "skyblue",
main = "Gráfica N°2: Comparación de la Realidad y el Modelo Log-normal de la temperatura mínima en el volcán Antisana",
xlab = "Temperatura mínima (°C)",
ylab = "Densidad de probabilidad",
cex.main = 0.9,
xlim = xlim,
xaxt = "n"
)
axis(1, at = breaks)
x <- seq(xlim[1], xlim[2], by = 0.001)
lines(x, dlnorm(x, meanlog = ulog, sdlog = sigmalog), col = "darkblue", lwd = 3)

#PASO 7: TEST DE BONDAD
#PASO 7.1: TEST DE PEARSON
fo_Temp_min <- hist(Temp_min, breaks=breaks, plot=FALSE)$counts
fo_Temp_min
## [1] 1 2 7 16 48 109 90 66 27
n_Temp_min <- length(Temp_min)
fe_Temp_min <- numeric(length(fo_Temp_min))
for(i in 1:length(fo_Temp_min)){
fe_Temp_min[i] <- n_Temp_min * (plnorm(breaks[i+1], meanlog = ulog, sdlog = sigmalog) -
plnorm(breaks[i], meanlog = ulog, sdlog = sigmalog))
}
fe_Temp_min
## [1] 4.914119e-05 5.410726e-02 2.666588e+00 2.324386e+01 6.823973e+01
## [6] 9.706234e+01 8.401222e+01 5.137289e+01 2.453682e+01
Correlación<-cor(fo_Temp_min,fe_Temp_min)*100
Correlación
## [1] 96.62853
#PASO 7.2: TEST DE CHI CUADRADO
fe_frac_TMIN <- fe_Temp_min / n_Temp_min
fe_frac_TMIN
## [1] 1.342655e-07 1.478340e-04 7.285759e-03 6.350780e-02 1.864473e-01
## [6] 2.651976e-01 2.295416e-01 1.403631e-01 6.704049e-02
fo_frac_TMIN <- fo_Temp_min / n_Temp_min
fo_frac_TMIN
## [1] 0.002732240 0.005464481 0.019125683 0.043715847 0.131147541 0.297814208
## [7] 0.245901639 0.180327869 0.073770492
x2_TMIN <- sum((fo_frac_TMIN - fe_frac_TMIN)^2 / fe_frac_TMIN)
x2_TMIN
## [1] 55.84459
k_TMIN <- length(fo_frac_TMIN)
gl_TMIN <- k - 1 -2
gl_TMIN
## [1] 7
umbral_aceptacionTMIN <- qchisq(0.9999999999, df = gl_TMIN)
umbral_aceptacionTMIN
## [1] 60.8952
x2_TMIN<umbral_aceptacionTMIN
## [1] TRUE
#PASO 9: CÁLCULO DE PROBABILIDADES
#Cuál es la probabilidad de que la temperatura mínima sea menor a 6 °C o mayor a 9.5 °C?
plnorm(6, ulog, sigmalog) + (1 - plnorm(9.5, ulog, sigmalog))
## [1] 0.2374891
#¿Cuál es la probabilidad de que la temperatura mínima sea mayor o igual a 9 °C?
1 - plnorm(9, ulog, sigmalog)
## [1] 0.2478719
#PASO 10: INTERVALO DE CONFIANZA
Media <-mean(Temp_min)
S<-sd(Temp_min)
n<-length(Temp_min)
error<- 2*(S/sqrt(n))
#Límites intevalo de cofianza
limite_inferior<- round(Media-error,2)
limite_superior<- round(Media+error,2)
tabla_intervaloTMIN <- data.frame(Intervalo = "P [7.9< µ <8.19] = 95%")
tabla_intervaloTMIN %>%
gt() %>%
tab_header(
title = md("*Tabla Nro. 2*"),
subtitle = md("**Intervalo de confianza de la temperatura mínima en el volcán Antisana **")
) %>%
tab_source_note(
source_note = md("Autor: Grupo 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 2 |
| **Intervalo de confianza de la temperatura mínima en el volcán Antisana ** |
| Intervalo |
| P [7.9< µ <8.19] = 95% |
| Autor: Grupo 3 |
#PASO 11: CONCLUSIÓN
# La variable temperatura mínima (°C) se explica con un modelo log-normal con sesgo a la izquierda con parametros µ = 2.068 y σ = 0.188
#y podemos afirmar con 95% de confianza que la media aritmética de está variable se encuentra entre 7.9 y 8.19 (°C)
#con una desviasión estándar de 1.37 (°C).
#ESTADÍSTICA MULTIVRIABLE
#Paso 1 Seleccionamos las dos variables
#Causa y efecto: Entre más radiación solar hay mayores temperaturas, mostrando una relacion proporcional.
Radiacion <- datos$Solar
Temp_max <- datos$Max.Temperature
x <- Radiacion
y <- Temp_max
#Paso 2 Tabla de pares de valores
TVP <- data.frame(x,y)
#Formato de la tabla
library(gt)
library(dplyr)
TVP %>%
gt() %>%
tab_header(
title = md("Tabla Nro. 1"),
subtitle = md("Pares de valores de temperatura máxima y radiación solar del clima volcán Antisana en 2012")
) %>%
tab_source_note(
source_note = md("Autor: GRUPO 3")
) %>%
tab_options(
table.border.top.color = "black",
table.border.bottom.color = "black",
table.border.top.style = "solid",
table.border.bottom.style = "solid",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
column_labels.border.bottom.width = px(2),
row.striping.include_table_body = TRUE,
heading.border.bottom.color = "black",
heading.border.bottom.width = px(2),
table_body.hlines.color = "gray",
table_body.border.bottom.color = "black"
)
| Tabla Nro. 1 |
| Pares de valores de temperatura máxima y radiación solar del clima volcán Antisana en 2012 |
| x |
y |
| 15.98 |
16.10 |
| 12.25 |
15.50 |
| 4.58 |
11.55 |
| 4.32 |
12.02 |
| 3.86 |
11.73 |
| 9.57 |
12.11 |
| 10.93 |
13.06 |
| 2.40 |
11.53 |
| 5.32 |
12.95 |
| 7.19 |
13.38 |
| 6.71 |
12.99 |
| 10.77 |
17.40 |
| 9.66 |
15.88 |
| 5.37 |
13.65 |
| 4.02 |
13.07 |
| 9.64 |
13.81 |
| 8.11 |
13.02 |
| 3.19 |
12.31 |
| 3.64 |
12.73 |
| 5.60 |
12.17 |
| 8.75 |
12.54 |
| 4.57 |
11.78 |
| 1.52 |
10.51 |
| 1.93 |
10.32 |
| 10.43 |
12.81 |
| 3.60 |
11.91 |
| 6.45 |
13.18 |
| 1.35 |
11.57 |
| 5.55 |
11.94 |
| 6.50 |
12.39 |
| 6.87 |
13.27 |
| 8.17 |
13.38 |
| 1.58 |
11.58 |
| 5.28 |
12.85 |
| 10.11 |
14.18 |
| 8.24 |
14.65 |
| 1.90 |
12.42 |
| 6.07 |
13.84 |
| 7.16 |
13.48 |
| 7.87 |
14.34 |
| 11.57 |
14.38 |
| 2.15 |
11.13 |
| 8.31 |
12.91 |
| 6.11 |
11.59 |
| 8.86 |
12.47 |
| 5.92 |
11.55 |
| 5.95 |
12.14 |
| 5.10 |
10.73 |
| 4.00 |
11.42 |
| 8.01 |
12.26 |
| 4.08 |
11.38 |
| 3.59 |
12.04 |
| 2.83 |
10.83 |
| 2.90 |
10.99 |
| 3.07 |
11.43 |
| 1.82 |
11.41 |
| 1.54 |
11.05 |
| 4.28 |
11.56 |
| 6.99 |
12.24 |
| 6.89 |
12.80 |
| 9.89 |
14.44 |
| 11.45 |
17.04 |
| 8.35 |
16.21 |
| 5.44 |
14.15 |
| 4.63 |
12.85 |
| 9.72 |
14.69 |
| 11.63 |
17.98 |
| 16.16 |
17.10 |
| 20.53 |
18.81 |
| 13.70 |
15.57 |
| 17.42 |
17.53 |
| 16.27 |
17.50 |
| 18.80 |
19.00 |
| 14.41 |
16.85 |
| 14.52 |
17.11 |
| 13.32 |
17.07 |
| 8.32 |
14.42 |
| 3.98 |
13.91 |
| 4.49 |
11.73 |
| 2.39 |
11.71 |
| 7.02 |
12.45 |
| 4.29 |
12.23 |
| 7.79 |
13.20 |
| 4.83 |
12.81 |
| 5.59 |
12.19 |
| 8.29 |
12.93 |
| 4.73 |
12.92 |
| 4.83 |
14.30 |
| 11.93 |
15.56 |
| 14.83 |
18.25 |
| 12.42 |
15.47 |
| 13.34 |
16.30 |
| 13.22 |
16.92 |
| 11.89 |
15.52 |
| 4.44 |
12.28 |
| 3.45 |
11.86 |
| 5.38 |
13.75 |
| 7.20 |
13.52 |
| 4.74 |
10.97 |
| 8.03 |
13.76 |
| 10.47 |
12.32 |
| 16.45 |
14.53 |
| 10.60 |
13.10 |
| 11.69 |
13.70 |
| 10.17 |
14.20 |
| 11.57 |
13.42 |
| 4.33 |
11.81 |
| 5.45 |
12.39 |
| 3.56 |
12.24 |
| 7.98 |
14.56 |
| 9.87 |
13.90 |
| 10.95 |
14.77 |
| 7.18 |
13.07 |
| 11.98 |
15.19 |
| 8.21 |
14.36 |
| 16.90 |
17.63 |
| 3.87 |
14.35 |
| 9.73 |
14.36 |
| 5.13 |
13.42 |
| 3.54 |
12.37 |
| 7.40 |
13.71 |
| 7.61 |
14.26 |
| 13.65 |
15.88 |
| 21.70 |
17.35 |
| 16.46 |
16.22 |
| 14.53 |
14.77 |
| 11.31 |
15.35 |
| 12.95 |
15.15 |
| 13.57 |
16.49 |
| 12.13 |
15.26 |
| 15.54 |
16.23 |
| 11.48 |
14.93 |
| 6.16 |
14.18 |
| 5.63 |
13.50 |
| 14.65 |
17.12 |
| 10.78 |
15.33 |
| 13.21 |
18.85 |
| 16.16 |
17.26 |
| 11.76 |
14.43 |
| 4.89 |
12.55 |
| 4.61 |
15.70 |
| 7.98 |
14.04 |
| 13.62 |
16.14 |
| 18.58 |
16.67 |
| 25.28 |
17.34 |
| 24.96 |
19.19 |
| 25.11 |
18.76 |
| 26.70 |
20.24 |
| 21.17 |
20.09 |
| 21.44 |
18.54 |
| 24.41 |
18.68 |
| 26.23 |
19.89 |
| 23.67 |
18.43 |
| 16.36 |
18.98 |
| 15.49 |
16.35 |
| 21.36 |
17.08 |
| 19.28 |
17.26 |
| 25.20 |
17.44 |
| 25.88 |
19.12 |
| 22.03 |
17.09 |
| 24.51 |
17.64 |
| 25.95 |
19.02 |
| 24.77 |
19.65 |
| 22.40 |
16.46 |
| 24.38 |
16.26 |
| 14.84 |
16.16 |
| 21.01 |
16.79 |
| 16.21 |
15.58 |
| 21.77 |
16.27 |
| 20.93 |
16.00 |
| 17.68 |
15.21 |
| 20.32 |
19.65 |
| 19.89 |
16.57 |
| 26.28 |
19.16 |
| 20.91 |
18.09 |
| 15.23 |
18.03 |
| 23.15 |
15.83 |
| 23.24 |
17.46 |
| 25.32 |
17.67 |
| 24.51 |
16.63 |
| 12.93 |
15.50 |
| 23.49 |
16.79 |
| 20.54 |
19.42 |
| 26.46 |
20.59 |
| 23.87 |
18.13 |
| 22.65 |
16.34 |
| 14.82 |
16.26 |
| 22.19 |
16.80 |
| 21.11 |
17.32 |
| 26.14 |
20.88 |
| 25.97 |
18.58 |
| 23.48 |
18.67 |
| 23.31 |
17.66 |
| 24.58 |
16.55 |
| 24.72 |
17.46 |
| 22.81 |
16.51 |
| 24.74 |
17.63 |
| 26.30 |
19.27 |
| 26.68 |
19.19 |
| 25.67 |
21.32 |
| 27.03 |
21.00 |
| 21.33 |
17.72 |
| 21.60 |
18.12 |
| 27.15 |
21.21 |
| 27.00 |
20.38 |
| 26.87 |
19.82 |
| 27.49 |
21.56 |
| 27.57 |
21.51 |
| 25.71 |
19.87 |
| 26.45 |
22.60 |
| 21.47 |
18.15 |
| 26.02 |
21.06 |
| 23.87 |
19.74 |
| 25.68 |
20.39 |
| 25.50 |
18.06 |
| 21.02 |
17.88 |
| 24.63 |
19.26 |
| 27.04 |
20.71 |
| 27.21 |
18.95 |
| 27.82 |
17.64 |
| 28.31 |
19.24 |
| 28.43 |
21.20 |
| 23.69 |
18.99 |
| 23.32 |
18.60 |
| 13.49 |
16.81 |
| 20.40 |
16.94 |
| 14.08 |
17.44 |
| 18.42 |
17.27 |
| 21.71 |
17.40 |
| 12.10 |
16.37 |
| 22.30 |
17.60 |
| 28.54 |
19.69 |
| 28.45 |
19.10 |
| 28.67 |
20.61 |
| 28.30 |
18.10 |
| 28.57 |
17.79 |
| 28.66 |
18.00 |
| 28.51 |
20.83 |
| 26.72 |
22.34 |
| 24.67 |
21.30 |
| 28.99 |
23.47 |
| 20.94 |
19.11 |
| 27.35 |
22.96 |
| 26.15 |
20.48 |
| 29.49 |
21.47 |
| 23.54 |
20.39 |
| 24.22 |
18.32 |
| 27.74 |
18.56 |
| 23.88 |
20.02 |
| 29.54 |
20.89 |
| 25.65 |
18.82 |
| 26.40 |
20.48 |
| 29.99 |
23.42 |
| 29.10 |
19.31 |
| 30.05 |
22.04 |
| 27.33 |
19.40 |
| 30.27 |
23.79 |
| 27.88 |
21.01 |
| 29.26 |
19.79 |
| 26.31 |
17.86 |
| 25.28 |
17.67 |
| 16.94 |
16.78 |
| 25.09 |
17.85 |
| 18.76 |
17.49 |
| 17.01 |
16.46 |
| 24.15 |
18.33 |
| 19.89 |
17.39 |
| 12.87 |
15.34 |
| 20.83 |
16.45 |
| 27.79 |
19.00 |
| 13.61 |
17.11 |
| 16.59 |
16.80 |
| 28.21 |
18.20 |
| 29.04 |
20.20 |
| 20.77 |
17.60 |
| 22.85 |
16.89 |
| 24.65 |
16.29 |
| 16.29 |
16.26 |
| 1.26 |
10.99 |
| 7.55 |
12.66 |
| 12.11 |
15.47 |
| 5.30 |
13.82 |
| 9.01 |
15.20 |
| 12.84 |
14.06 |
| 13.35 |
13.94 |
| 9.25 |
14.15 |
| 6.27 |
13.32 |
| 11.19 |
14.75 |
| 13.04 |
15.17 |
| 3.62 |
12.79 |
| 3.59 |
11.35 |
| 8.39 |
12.74 |
| 10.04 |
12.82 |
| 15.18 |
16.27 |
| 10.40 |
14.66 |
| 17.05 |
15.87 |
| 19.09 |
15.81 |
| 11.32 |
13.80 |
| 7.11 |
15.02 |
| 13.48 |
16.01 |
| 14.67 |
17.23 |
| 20.45 |
16.83 |
| 13.20 |
15.29 |
| 10.21 |
13.90 |
| 5.55 |
13.43 |
| 11.93 |
14.55 |
| 13.24 |
15.19 |
| 13.15 |
15.61 |
| 5.84 |
12.55 |
| 9.66 |
14.36 |
| 3.99 |
13.20 |
| 5.15 |
12.71 |
| 13.12 |
15.60 |
| 7.19 |
13.93 |
| 2.79 |
12.49 |
| 8.17 |
13.75 |
| 7.26 |
13.09 |
| 9.12 |
14.87 |
| 10.44 |
13.98 |
| 11.50 |
14.85 |
| 23.43 |
15.32 |
| 16.92 |
15.52 |
| 15.19 |
15.95 |
| 4.54 |
13.00 |
| 3.13 |
13.62 |
| 2.94 |
13.57 |
| 8.98 |
13.81 |
| 9.89 |
14.39 |
| 3.45 |
13.06 |
| 9.99 |
15.19 |
| 4.31 |
13.69 |
| 9.00 |
15.04 |
| 10.37 |
13.39 |
| 10.61 |
14.27 |
| 5.39 |
11.88 |
| 11.20 |
14.25 |
| 8.83 |
13.24 |
| 23.37 |
14.99 |
| 11.88 |
13.88 |
| 8.28 |
12.86 |
| 14.59 |
15.73 |
| 11.84 |
15.78 |
| 11.56 |
15.75 |
| 13.27 |
18.26 |
| 19.30 |
18.82 |
| 9.04 |
14.77 |
| 7.86 |
13.58 |
| 12.35 |
13.96 |
| 17.65 |
15.20 |
| 15.82 |
15.10 |
| 9.98 |
14.00 |
| 10.62 |
13.25 |
| 11.39 |
13.85 |
| 6.37 |
13.19 |
| 9.36 |
14.44 |
| 6.03 |
13.40 |
| 5.20 |
13.45 |
| 12.47 |
17.23 |
| 7.48 |
14.27 |
| 11.81 |
15.65 |
| 7.68 |
13.97 |
| 10.47 |
15.41 |
| 9.85 |
16.39 |
| 14.04 |
16.21 |
| 11.64 |
16.63 |
| 5.71 |
13.17 |
| Autor: GRUPO 3 |
# Paso 3 Gráfica de nube de puntos
plot(x, y,
main = "Gráfica de nube de puntos entre la Temperatura máxima y la Radiación Solar del
Volcán Antisana 2012",
xlab = "Radiación Solar (J/m²)",
ylab = "Temperatura máxima (°C)",
col = "orange",
pch = 13,
xlim = c(0,max(x)),
ylim = c(0,max(y)),
)
#Paso 4 Conjetura
#Debido a la distribución de los puntos se sugiere que el mejor modelo para la gráfica de nube de puntos
#es un modelo lineal, ya que se ve una proporcionalidad, mientras la radiación solar aumenta
#la temperatura máxima tambien aumenta.
#Cálculo de parámetros modelo lineal
regresionlineal <- lm(y~x)
regresionlineal
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 11.2237 0.3129
#Sustraemos pendiente e interceptor
I <- regresionlineal$coefficients[1]
I
## (Intercept)
## 11.22374
m <- regresionlineal$coefficients[2]
m
## x
## 0.312879
#Paso 6 Sobreponer : El modelo con la realidad
plot(x, y,
main = "Gráfica de nube de puntos entre la Temperatura máxima y la Radiación Solar del
Volcán Antisana 2012",
xlab = "Radiación Solar (J/m²)",
ylab = "Temperatura máxima (°C)",
col = "orange",
pch = 13,
xlim = c(0,max(x)),
ylim = c(0,max(y)),
)
abline(regresionlineal,col= "green",lwd = 2)

#Paso 7 :Test
#Test de Person
r <- cor(x,y)*100
r
## [1] 90.87017
#Paso 8: Coeficiente de determinación muestral
r2 <- r*r/100
r2
## [1] 82.57388
#Paso 9 :Restricciones
#Dominio [x]: D= {R+^0}
#Dominio [y]: D= {R}
# ¿Existe algún valor en dominio de x que sustituido en el modelo
#matemático genere un valor en y fuera de su dominio?
#Ningún valor de la radiación solar genera resultados fuera del rango de la
#temperatura máxima, ya que la radiación solar toma valores mayores o iguales a cero y,
#al aplicarse en el modelo lineal, siempre produce valores válidos de temperatura.
#Por lo tanto, el modelo es coherente con los valores que pueden tomar ambas variables.
#Paso 10: Aplicaciones del modelo
#¿Cuál sera la temperatura máxima esperada cuando se tenga una radiación solar de 16(J/m²)?
TemperaturaMax_Esperada <- m*16+I
TemperaturaMax_Esperada
## x
## 16.22981
# PASO 11: Conclusión
# Entre temperatura máxima (°C) y radiación solar (J/m2) existe la relación tipo lineal
#cuya ecuación es y=11.223+0.312x siendo y= máxima temperatura (°C),
#x= radiación solar (J/m2), donde la temperaatura máxima depende en un 82.57%
#de la radiación solar y el 18.43% se debe a otros factores.