q4df <- (parameters(~n,~mu,~sigma,c(4,8,15),c(-2,0,2),c(1,2,3))
%>%add_trials(10000)
%>%mutate(Y_n=pmap(list(n,mu,sigma),\(x,m,y) rnorm(x,m,y^2)),Y_hat = map_dbl(Y_n,\(y) mean(y)),S_n=pmap_dbl(list(n,Y_n,Y_hat),\(x,y,z) (sum((y-z)^2)/(x-1))^(1/2)))
%>%mutate(T=pmap_dbl(list(n,mu,Y_hat,S_n),\(n,m,y,s) (y-m)/(s/(n)^(1/2))),ft = pmap_dbl(list(T,n),\(x,n) dt(x,n-1)))
)
q4df
# A tibble: 270,000 × 9
n mu sigma .trial Y_n Y_hat S_n T ft
<dbl> <dbl> <dbl> <dbl> <list> <dbl> <dbl> <dbl> <dbl>
1 4 -2 1 1 <dbl [4]> -1.58 1.06 0.791 0.252
2 4 -2 1 2 <dbl [4]> -2.07 0.630 -0.226 0.355
3 4 -2 1 3 <dbl [4]> -1.65 0.369 1.89 0.0765
4 4 -2 1 4 <dbl [4]> -1.48 1.34 0.771 0.256
5 4 -2 1 5 <dbl [4]> -2.25 0.795 -0.636 0.285
6 4 -2 1 6 <dbl [4]> -2.11 1.23 -0.180 0.360
7 4 -2 1 7 <dbl [4]> -2.34 1.15 -0.592 0.295
8 4 -2 1 8 <dbl [4]> -1.92 0.622 0.271 0.350
9 4 -2 1 9 <dbl [4]> -2.33 0.499 -1.33 0.146
10 4 -2 1 10 <dbl [4]> -1.98 0.880 0.0408 0.367
# ℹ 269,990 more rows