The following exam is the Spring 2024, Midterm Performance. Particularly, an Achievement Test. Intended to measure learned knowledge or skills aquired across 4 weeks and reviewed the day before the exam.
The 3 primary topics assessed are :
Probability
Design
Regression
The following analysis & modeling isn’t meant to be an exhuastive sample meant to generalize across Stats 10 Classes–but rather as a demonstration of the utility & comparison between Latent Variable modeling & typical Data Science Methods s.t. we illuminate underlying assumptions and gain a fundamental understanding of the two.
The present study seeks to investigate the latent dimensional
structure of the Spring 2024 midterm examination after qualitative
research I have determined three instructional domains assessed for the
exam: Probability, Design, and
Regression.
Does a unidimensional IRT model adequately represent student performance on the midterm?
Does a correlated three-factor multidimensional IRT model, reflecting Probability, Design, and Regression, provide improved model–data fit?
Does a hierarchical or bifactor structure better account for shared and domain-specific variance in item responses?
ie. A general statistics ability (shared across all items),
ie. PLUS domain-specific skills (Probability, Design, Regression)?
Do domain-level subscores demonstrate sufficient reliability and distinctiveness to justify reporting them separately from a total score?
Which individual exam items exert the greatest influence on overall exam performance, and do these align with the highest discrimination parameters from the latent variable model?
Does the dimensional structure suggested by IRT (unidimensional vs. multidimensional vs. bifactor) correspond to the structure recovered by data-driven methods such as PCA, clustering, or predictive modeling?
Do the manually assigned instructional domains (Probability, Design, Regression) from qualitative research improve predictive accuracy of student performance beyond item-level models, thereby demonstrating incremental utility in a data science framework?
Population : Stats 10 Std
Sample : Spring, 2024 Stats 10 Std taught by Thomas, with particular
TA’s
df <- read.csv("/Users/isaiahmireles/Desktop/Misconceptions/24S-STATS-10-LEC-4_Midterm/S24_Midterm_student_responses copy.csv")
library(tidyverse)
Lets hide the identity of students :
df$Student.ID <- paste0("Student", seq_len(nrow(df)))
# grab relevant col :
df <- df |> select(
Student.ID, Sections, Max.Points, Total.Score,
matches(
"^Question\\.[0-9]+\\.Score$|
^Question\\.[0-9]+\\.Student\\.Response\\.s\\.$|
^Question [0-9]+ Correct Response$"
)
)
nrow(df) = 155?
unique(length(df$Student.ID))
## [1] 155
yes. So, there are 155 unique students – 1 student per row
df$Max.Points[1]
## [1] "34.0"
There are 34 questions, each weighted equally (ie. 1) – a max score is 34/34
cat(paste0("Each Q, is worth about: ", round(1/34, 2)*100),"%")
## Each Q, is worth about: 3 %
Recall Sample average formula :
\[ \bar{x}=\frac{1}{n}\sum_{\forall i}x_i, \ i=\{1,...,n\} \]
Where \(x_i\) are sampled measures and \(n\) is sample size.
df$Total.Score <- as.numeric(df$Total.Score)
## Warning: NAs introduced by coercion
summary(df$Total.Score)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 13.00 23.00 27.00 26.33 30.00 34.00 6
As we can see, the IQR (Interquartile Range) is from 23-30, meaning the central 50% of our data lies between 23 to 30
\[ \text{S.D.}_{\text{Sample}} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}} \]
sd(df$Total.Score, na.rm = T)
## [1] 4.477335
library(patchwork)
total_score_hist1 <-
df |>
ggplot(aes(x = Total.Score)) +
geom_histogram(binwidth = 4, fill = "lightblue", color = "black") +
scale_x_continuous(
breaks = seq(
floor(min(df$Total.Score, na.rm = T)),
ceiling(max(df$Total.Score, na.rm = T)),
by = 1
)
) +
labs(title = "Bin width = S.D. -- basic look")
total_score_hist2 <-
df |>
ggplot(aes(x = Total.Score)) +
geom_histogram(binwidth = 1, fill = "lightblue", color = "black") +
labs(title = "Bin width = 1 (ie. 1 point buckets)")
bx_plt <-
df |>
ggplot(aes(x = Total.Score)) +
geom_boxplot()
total_score_hist1 / total_score_hist2 / bx_plt
Citations :
df |>
ggplot(aes(x = Total.Score)) +
geom_histogram(aes(y = after_stat(density)),
binwidth = 2,
fill = "lightblue",
color = "black") +
stat_function(fun = dnorm,
args = list(
mean = mean(df$Total.Score, na.rm = TRUE),
sd = sd(df$Total.Score, na.rm = TRUE)
),
color = "red",
linewidth = 1) +
labs(title = "Histogram with Normal Curve Overlay")
Just taking a look, it doesn’t seem terrible but there appears to be skew.
Also consider because our scores are bounded (0–34), you have a ceiling effect–and our normal model stretches to infinity and our scores don’t.
df |>
ggplot(aes(sample = Total.Score)) +
stat_qq() +
stat_qq_line(color = "red") +
labs(title = "Normal Q-Q Plot", x = "Theoretical Normal Quantiles", y = "Std. Total Score Quantile")
okay, as we can see – more evidence of skew as the data isnt perfectly following a normal dist.
Things above the mean (normalized, above 0) are poor estimates.
One SD above the mean is roughly :
round(mean(df$Total.Score, na.rm=T) + sd(df$Total.Score, na.rm = T), 0)
## [1] 31
citations :
Quantile-Quantile Plots (QQ plots), Clearly Explained!!!
Quantiles and Percentiles, Clearly Explained!!!
Interpreting the normal QQ-plot
Normal Quantile-Quantile Plots
\[ P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k} \]
\[ \binom{n}{k} \quad \text{counts how many different ways we can get } k \text{ successes in } n \text{ trials.} \]
\[ p^k \quad \text{is the probability of getting } k \text{ successes.} \]
\[ (1 - p)^{n - k} \quad \text{is the probability of getting the remaining } n-k \text{ failures.} \]
Since we know our data isnt actually continuous and we are experiencing a ceiling effect, we can maybe try its discrete partner ( Binomial dist. )
\[ \hat{p}=\frac{\bar{x}}{n} \]
n <- 34
p_hat <- mean(df$Total.Score, na.rm = TRUE) / n
k_vals <- 0:n
binom_probs <- dbinom(k_vals, size = n, prob = p_hat)
df |>
ggplot(aes(x = Total.Score)) +
geom_histogram(aes(y = ..density..),
binwidth = 1,
fill = "lightblue",
color = "black") +
geom_point(
data = data.frame(
Total.Score = k_vals,
density = binom_probs
),
aes(x = Total.Score, y = density),
color = "red",
size = 2
) +
labs(
title = "Observed Scores with Fitted Binomial Model",
x = "Total Score",
y = "Density"
)
Before latent variable modeling, we ask basic psychometric questions to understand the exam.
Score Reliability
How consistent is the total test score?
How much of the score variance reflects true differences between students versus random error?
How precise are individual students’ scores (what is the standard error of measurement)?
Item Quality
Are items appropriately difficult (not too easy or too hard)?
Do items discriminate between high- and low-performing students?
Does removing any item improve the test?
The core general focus on the Latent variable analysis is Dimensionality, to investigate this :
The first question we will focus on is :
Does a unidimensional IRT model adequately represent student performance on the midterm?
binary_matrix <-
df |> select(
matches("^Question\\.[0-9]+\\.Score$")
)
So, there as with any model–there are assumptions. The pearson correlation coef. has 4 underlying assumptions:
If you notice, we are violating this assumption as our values are {0,1} only (binary)–therefore, a more apt. version is tetrachoric correlations.
This assumes :
Therefore, this correlation is more appropriate for dichotomous test items (0,1 scoring).
binary_matrix
# incomplete obs " cor(binary_matrix) didn work
# whats missing?
library(naniar)
miss_var_summary(binary_matrix) |> head()
Okay so, we are missing 6 student for each question about 4% of the data. Who are those six students?
# unique(binary_matrix$Question.1.Score)
lapply(as.list(binary_matrix), function(x){which(is.na(x))}) |>
as.data.frame()
Yeh, so its the same 6 students
binary_matrix
cor_matrix <- cor(binary_matrix, use = "complete.obs")
library(corrplot)
## corrplot 0.95 loaded
corrplot(
cor_matrix,
method = "color",
type = "upper",
tl.col = "black",
tl.cex = 0.7
)
Exam as a whole^
Except notice there is a problem with this – out data is one of two values : 0,1
– Pearsons Correlation assumes continuous, linear and ideally normally distributed variables (Of which – mist are ).
Therefore the The tetrachoric correlation is more appropriate.
library(psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
# Suppose dat is a data frame or matrix of 0/1 variables
tetra <- tetrachoric(binary_matrix)
## Warning in cor.smooth(mat): Matrix was not positive definite, smoothing was
## done
# Extract the correlation matrix
R_tetra <- tetra$rho
R_tetra
## Question.1.Score Question.2.Score Question.3.Score
## Question.1.Score 1.00000000 0.497121399 0.19771922
## Question.2.Score 0.49712140 1.000000000 0.51509384
## Question.3.Score 0.19771922 0.515093836 1.00000000
## Question.4.Score 0.15142336 -0.048191692 0.02389296
## Question.5.Score 0.03036706 0.274061682 0.15917512
## Question.6.Score -0.08099854 0.109949940 0.38700424
## Question.7.Score 0.52114593 0.306486922 0.24499054
## Question.8.Score 0.20600707 0.231947507 0.27902704
## Question.9.Score 0.17910356 0.424931567 0.30108836
## Question.10.Score 0.34694799 0.499635144 0.52130894
## Question.11.Score 0.11522300 0.192666933 0.13930365
## Question.12.Score 0.18837765 0.297425961 0.15962672
## Question.13.Score -0.03665167 -0.009375441 0.33056686
## Question.14.Score 0.01180035 0.247690598 0.26951068
## Question.15.Score 0.01787841 -0.086017358 0.05224854
## Question.16.Score 0.20271100 0.148994113 -0.08858171
## Question.17.Score 0.23959405 0.301125387 0.09065888
## Question.18.Score -0.03738325 -0.034359822 0.36734530
## Question.19.Score 0.19238529 -0.079292501 0.21892485
## Question.20.Score 0.14239707 0.135698836 0.29456595
## Question.21.Score -0.11719143 0.126475839 0.21126401
## Question.22.Score 0.04692191 0.317877825 0.02085874
## Question.23.Score 0.12618331 0.068237269 0.33875798
## Question.24.Score 0.31965528 0.169507424 0.21081647
## Question.25.Score 0.03899115 -0.055744270 0.27445451
## Question.26.Score -0.11937734 0.149803621 0.15472927
## Question.27.Score -0.03821766 0.235606288 0.43936634
## Question.28.Score 0.30261688 0.233286533 0.32178135
## Question.29.Score -0.06879692 0.155131455 0.25111410
## Question.30.Score 0.31886476 0.517352667 0.35679282
## Question.31.Score 0.30137864 0.311818688 0.31792361
## Question.32.Score 0.30858303 0.215141385 -0.12381963
## Question.33.Score 0.17788721 0.287407472 0.07171567
## Question.34.Score 0.05049106 0.278294536 0.20153377
## Question.4.Score Question.5.Score Question.6.Score
## Question.1.Score 1.514234e-01 0.03036706 -0.08099854
## Question.2.Score -4.819169e-02 0.27406168 0.10994994
## Question.3.Score 2.389296e-02 0.15917512 0.38700424
## Question.4.Score 1.000000e+00 -0.09625325 -0.12042262
## Question.5.Score -9.625325e-02 1.00000000 0.30713467
## Question.6.Score -1.204226e-01 0.30713467 1.00000000
## Question.7.Score 8.719649e-05 0.19313253 0.35715664
## Question.8.Score 2.617658e-01 0.20285520 0.02715386
## Question.9.Score 1.618841e-01 0.18304102 0.15034286
## Question.10.Score 3.592071e-01 0.25299949 0.11844535
## Question.11.Score 2.614627e-02 0.30323913 0.09496295
## Question.12.Score 2.243169e-01 0.16535437 0.23338124
## Question.13.Score 4.670877e-01 0.06934029 0.39411337
## Question.14.Score 2.415456e-02 0.24576768 0.18041822
## Question.15.Score 5.330034e-02 0.02291785 0.24101323
## Question.16.Score 1.548412e-01 0.05474114 0.06065028
## Question.17.Score 3.952093e-01 -0.12057818 -0.02699511
## Question.18.Score 3.463172e-01 0.25548357 0.22477782
## Question.19.Score 3.138069e-01 0.29918794 0.22505413
## Question.20.Score 2.704820e-01 0.42725584 0.23143691
## Question.21.Score 2.927847e-01 0.48105725 0.11568460
## Question.22.Score 1.411515e-02 0.09194347 -0.13113417
## Question.23.Score 2.601261e-01 0.30419256 0.42428224
## Question.24.Score -2.780949e-01 0.15358902 0.01575079
## Question.25.Score 9.775865e-02 0.21857841 0.40959903
## Question.26.Score -1.397472e-01 0.45834428 0.33243798
## Question.27.Score 1.511456e-01 0.43805319 0.62995888
## Question.28.Score 2.891444e-01 0.18183714 0.02052230
## Question.29.Score 1.807577e-01 0.06175462 0.46102711
## Question.30.Score 2.215398e-01 0.07512057 0.12139140
## Question.31.Score 6.879205e-02 0.37821807 0.30680604
## Question.32.Score 4.587003e-02 0.08632457 0.20472001
## Question.33.Score 1.726794e-01 0.34664171 0.34853678
## Question.34.Score 2.251077e-01 0.22936889 0.21471874
## Question.7.Score Question.8.Score Question.9.Score
## Question.1.Score 5.211459e-01 0.20600707 0.179103559
## Question.2.Score 3.064869e-01 0.23194751 0.424931567
## Question.3.Score 2.449905e-01 0.27902704 0.301088358
## Question.4.Score 8.719649e-05 0.26176579 0.161884131
## Question.5.Score 1.931325e-01 0.20285520 0.183041019
## Question.6.Score 3.571566e-01 0.02715386 0.150342855
## Question.7.Score 1.000000e+00 0.23146414 0.357444220
## Question.8.Score 2.314641e-01 1.00000000 0.277658850
## Question.9.Score 3.574442e-01 0.27765885 1.000000000
## Question.10.Score 1.132152e-01 0.40220884 0.482837801
## Question.11.Score 3.641499e-01 0.42741651 0.487912141
## Question.12.Score 1.480021e-01 0.34339936 0.386943739
## Question.13.Score 1.345201e-01 0.26222092 0.088218811
## Question.14.Score 1.202932e-01 0.22683586 0.345294931
## Question.15.Score 3.317890e-01 -0.04675071 -0.006833803
## Question.16.Score 1.831295e-01 0.19969789 0.528600159
## Question.17.Score 1.672933e-01 0.31319776 0.140528433
## Question.18.Score 2.810188e-02 0.37007178 0.274711285
## Question.19.Score 1.293068e-01 0.28562884 0.183273040
## Question.20.Score 3.078032e-01 0.53346649 0.489174686
## Question.21.Score -7.213607e-02 0.10513610 0.060955423
## Question.22.Score 1.085616e-01 0.08389676 0.065821556
## Question.23.Score -8.959554e-02 0.18625785 0.004666897
## Question.24.Score 9.339659e-02 -0.11781096 0.102826899
## Question.25.Score 3.593297e-01 0.32336827 0.216073695
## Question.26.Score 1.430373e-01 0.16476638 0.234591166
## Question.27.Score 3.125290e-01 0.30503232 0.525043467
## Question.28.Score 6.927903e-03 0.05845763 0.155578735
## Question.29.Score 1.288425e-01 0.05497390 0.356590572
## Question.30.Score 1.621723e-01 0.31419648 0.269551795
## Question.31.Score 2.311656e-01 0.54101706 0.225721268
## Question.32.Score 1.790953e-01 0.03743699 -0.044841465
## Question.33.Score 4.906197e-02 0.02844253 0.178582442
## Question.34.Score -1.318744e-02 0.21991728 0.014559247
## Question.10.Score Question.11.Score Question.12.Score
## Question.1.Score 0.346947987 0.11522300 0.188377647
## Question.2.Score 0.499635144 0.19266693 0.297425961
## Question.3.Score 0.521308942 0.13930365 0.159626723
## Question.4.Score 0.359207123 0.02614627 0.224316879
## Question.5.Score 0.252999488 0.30323913 0.165354375
## Question.6.Score 0.118445347 0.09496295 0.233381244
## Question.7.Score 0.113215235 0.36414992 0.148002127
## Question.8.Score 0.402208840 0.42741651 0.343399362
## Question.9.Score 0.482837801 0.48791214 0.386943739
## Question.10.Score 1.000000000 0.27029730 0.422043208
## Question.11.Score 0.270297296 1.00000000 0.396093772
## Question.12.Score 0.422043208 0.39609377 1.000000000
## Question.13.Score 0.194822926 0.22743872 0.454917051
## Question.14.Score 0.051511668 0.32803618 0.160468889
## Question.15.Score -0.147764743 -0.06028382 0.127891104
## Question.16.Score 0.235513494 0.46926889 0.465707707
## Question.17.Score 0.292493941 0.08643898 0.405494980
## Question.18.Score 0.361748260 0.26329516 0.278037996
## Question.19.Score 0.247167311 0.18534267 0.358226771
## Question.20.Score 0.493835165 0.48210678 0.512144084
## Question.21.Score 0.250876301 0.24126475 0.340913914
## Question.22.Score -0.002716641 -0.14492240 0.352014167
## Question.23.Score 0.341481992 -0.01620926 0.309869295
## Question.24.Score -0.011891664 0.13931471 -0.055448191
## Question.25.Score 0.219150274 0.17750760 0.303664325
## Question.26.Score 0.169133158 0.41714651 0.005345905
## Question.27.Score 0.499477323 0.15470145 0.233986017
## Question.28.Score 0.453702808 -0.09479722 -0.068866062
## Question.29.Score 0.321158780 0.13747252 0.441620963
## Question.30.Score 0.469052438 0.02666856 0.162270740
## Question.31.Score 0.385730532 0.07146000 0.318390219
## Question.32.Score 0.250500038 -0.06177103 0.239880233
## Question.33.Score 0.338043785 -0.15543021 0.353416309
## Question.34.Score 0.365565606 0.19823509 0.441593022
## Question.13.Score Question.14.Score Question.15.Score
## Question.1.Score -0.036651672 0.011800349 0.017878409
## Question.2.Score -0.009375441 0.247690598 -0.086017358
## Question.3.Score 0.330566864 0.269510684 0.052248542
## Question.4.Score 0.467087684 0.024154559 0.053300337
## Question.5.Score 0.069340285 0.245767675 0.022917853
## Question.6.Score 0.394113369 0.180418221 0.241013233
## Question.7.Score 0.134520124 0.120293184 0.331788963
## Question.8.Score 0.262220919 0.226835862 -0.046750713
## Question.9.Score 0.088218811 0.345294931 -0.006833803
## Question.10.Score 0.194822926 0.051511668 -0.147764743
## Question.11.Score 0.227438717 0.328036182 -0.060283817
## Question.12.Score 0.454917051 0.160468889 0.127891104
## Question.13.Score 1.000000000 0.133228155 0.248729075
## Question.14.Score 0.133228155 1.000000000 0.332731835
## Question.15.Score 0.248729075 0.332731835 1.000000000
## Question.16.Score 0.211472198 0.080796297 0.054785935
## Question.17.Score -0.065245588 0.119495183 -0.026704255
## Question.18.Score 0.384984337 -0.052732162 0.070919476
## Question.19.Score 0.427804652 -0.008159582 -0.081745024
## Question.20.Score 0.486176301 0.055592980 -0.072472628
## Question.21.Score 0.338990886 0.223895742 0.043799781
## Question.22.Score -0.019308758 0.200807650 0.075923215
## Question.23.Score 0.433421484 0.340791761 0.132746155
## Question.24.Score -0.218693069 0.271227274 0.050637746
## Question.25.Score 0.377313812 0.131553787 0.129135785
## Question.26.Score 0.124666936 -0.045140584 -0.177884684
## Question.27.Score 0.314755094 0.285639879 0.143549108
## Question.28.Score -0.024300358 0.076110074 0.065765910
## Question.29.Score 0.157612190 0.225363611 0.125970517
## Question.30.Score -0.187062335 0.206122868 -0.249774454
## Question.31.Score 0.168034856 0.092513719 0.066082181
## Question.32.Score 0.101677274 0.029700966 0.217744916
## Question.33.Score 0.245467147 0.051767958 0.331441269
## Question.34.Score 0.199809517 0.056413080 0.074888732
## Question.16.Score Question.17.Score Question.18.Score
## Question.1.Score 0.20271100 0.239594050 -0.03738325
## Question.2.Score 0.14899411 0.301125387 -0.03435982
## Question.3.Score -0.08858171 0.090658882 0.36734530
## Question.4.Score 0.15484117 0.395209345 0.34631718
## Question.5.Score 0.05474114 -0.120578183 0.25548357
## Question.6.Score 0.06065028 -0.026995114 0.22477782
## Question.7.Score 0.18312951 0.167293296 0.02810188
## Question.8.Score 0.19969789 0.313197757 0.37007178
## Question.9.Score 0.52860016 0.140528433 0.27471128
## Question.10.Score 0.23551349 0.292493941 0.36174826
## Question.11.Score 0.46926889 0.086438975 0.26329516
## Question.12.Score 0.46570771 0.405494980 0.27803800
## Question.13.Score 0.21147220 -0.065245588 0.38498434
## Question.14.Score 0.08079630 0.119495183 -0.05273216
## Question.15.Score 0.05478593 -0.026704255 0.07091948
## Question.16.Score 1.00000000 -0.078883424 0.35608002
## Question.17.Score -0.07888342 1.000000000 0.04440541
## Question.18.Score 0.35608002 0.044405406 1.00000000
## Question.19.Score 0.40916119 0.133909203 0.66479648
## Question.20.Score 0.48316366 0.100558918 0.65176828
## Question.21.Score 0.26895183 0.008277553 0.39338564
## Question.22.Score 0.20144464 0.260360128 -0.19198143
## Question.23.Score 0.13603399 0.030726816 0.34263725
## Question.24.Score 0.21619057 -0.214946388 0.02125778
## Question.25.Score 0.11286504 0.040414981 0.38392862
## Question.26.Score 0.31196528 -0.172947747 0.21667734
## Question.27.Score 0.12918056 0.077056442 0.45426365
## Question.28.Score 0.24081464 -0.063767634 0.42385936
## Question.29.Score 0.27240330 0.219448258 0.06325467
## Question.30.Score -0.03387101 0.634408405 0.20392562
## Question.31.Score 0.29814697 -0.024107157 0.37310613
## Question.32.Score 0.26725055 0.199747943 0.06764699
## Question.33.Score 0.26791034 0.207471385 0.31002902
## Question.34.Score 0.04765819 0.390440397 0.34003938
## Question.19.Score Question.20.Score Question.21.Score
## Question.1.Score 0.192385290 0.14239707 -0.117191434
## Question.2.Score -0.079292501 0.13569884 0.126475839
## Question.3.Score 0.218924853 0.29456595 0.211264015
## Question.4.Score 0.313806881 0.27048197 0.292784726
## Question.5.Score 0.299187940 0.42725584 0.481057249
## Question.6.Score 0.225054126 0.23143691 0.115684605
## Question.7.Score 0.129306819 0.30780320 -0.072136066
## Question.8.Score 0.285628842 0.53346649 0.105136100
## Question.9.Score 0.183273040 0.48917469 0.060955423
## Question.10.Score 0.247167311 0.49383517 0.250876301
## Question.11.Score 0.185342668 0.48210678 0.241264752
## Question.12.Score 0.358226771 0.51214408 0.340913914
## Question.13.Score 0.427804652 0.48617630 0.338990886
## Question.14.Score -0.008159582 0.05559298 0.223895742
## Question.15.Score -0.081745024 -0.07247263 0.043799781
## Question.16.Score 0.409161185 0.48316366 0.268951832
## Question.17.Score 0.133909203 0.10055892 0.008277553
## Question.18.Score 0.664796477 0.65176828 0.393385637
## Question.19.Score 1.000000000 0.72930231 0.272534687
## Question.20.Score 0.729302313 1.00000000 0.208329731
## Question.21.Score 0.272534687 0.20832973 1.000000000
## Question.22.Score 0.094513563 0.11198990 0.149644399
## Question.23.Score 0.363926622 0.31785455 0.430527251
## Question.24.Score 0.044314736 0.01318417 0.117212209
## Question.25.Score 0.482931826 0.55574353 0.091820622
## Question.26.Score 0.260950285 0.39897003 0.039467139
## Question.27.Score 0.333635888 0.45852548 0.198845223
## Question.28.Score 0.323947354 0.07723316 0.233892898
## Question.29.Score 0.059694238 0.06278774 0.274105762
## Question.30.Score 0.165710218 0.02307938 0.171879062
## Question.31.Score 0.248773824 0.37532526 0.327306308
## Question.32.Score 0.221043423 0.11884377 -0.018852770
## Question.33.Score 0.401274991 0.30305384 0.200515163
## Question.34.Score 0.160484384 0.27678966 0.270744658
## Question.22.Score Question.23.Score Question.24.Score
## Question.1.Score 0.046921911 0.126183314 0.319655279
## Question.2.Score 0.317877825 0.068237269 0.169507424
## Question.3.Score 0.020858736 0.338757978 0.210816472
## Question.4.Score 0.014115150 0.260126108 -0.278094873
## Question.5.Score 0.091943473 0.304192556 0.153589023
## Question.6.Score -0.131134167 0.424282241 0.015750794
## Question.7.Score 0.108561575 -0.089595538 0.093396588
## Question.8.Score 0.083896759 0.186257851 -0.117810960
## Question.9.Score 0.065821556 0.004666897 0.102826899
## Question.10.Score -0.002716641 0.341481992 -0.011891664
## Question.11.Score -0.144922400 -0.016209257 0.139314714
## Question.12.Score 0.352014167 0.309869295 -0.055448191
## Question.13.Score -0.019308758 0.433421484 -0.218693069
## Question.14.Score 0.200807650 0.340791761 0.271227274
## Question.15.Score 0.075923215 0.132746155 0.050637746
## Question.16.Score 0.201444645 0.136033985 0.216190569
## Question.17.Score 0.260360128 0.030726816 -0.214946388
## Question.18.Score -0.191981427 0.342637247 0.021257783
## Question.19.Score 0.094513563 0.363926622 0.044314736
## Question.20.Score 0.111989896 0.317854551 0.013184167
## Question.21.Score 0.149644399 0.430527251 0.117212209
## Question.22.Score 1.000000000 0.009206076 0.017839346
## Question.23.Score 0.009206076 1.000000000 0.033129974
## Question.24.Score 0.017839346 0.033129974 1.000000000
## Question.25.Score 0.014460141 0.240990700 -0.147514491
## Question.26.Score -0.043820788 0.041376977 -0.101540286
## Question.27.Score -0.114960872 0.338507466 -0.196569085
## Question.28.Score 0.109298177 0.186931915 0.183742506
## Question.29.Score 0.173067427 0.290944588 -0.181175480
## Question.30.Score 0.135459664 0.137225244 -0.119852891
## Question.31.Score 0.023619123 0.415362602 0.036366929
## Question.32.Score 0.078432406 0.297561907 -0.283387284
## Question.33.Score 0.139370021 0.384919216 -0.086412836
## Question.34.Score -0.087307723 0.107769056 -0.004763364
## Question.25.Score Question.26.Score Question.27.Score
## Question.1.Score 0.038991153 -0.119377340 -0.03821766
## Question.2.Score -0.055744270 0.149803621 0.23560629
## Question.3.Score 0.274454513 0.154729269 0.43936634
## Question.4.Score 0.097758649 -0.139747238 0.15114560
## Question.5.Score 0.218578413 0.458344275 0.43805319
## Question.6.Score 0.409599026 0.332437984 0.62995888
## Question.7.Score 0.359329746 0.143037253 0.31252899
## Question.8.Score 0.323368266 0.164766379 0.30503232
## Question.9.Score 0.216073695 0.234591166 0.52504347
## Question.10.Score 0.219150274 0.169133158 0.49947732
## Question.11.Score 0.177507603 0.417146505 0.15470145
## Question.12.Score 0.303664325 0.005345905 0.23398602
## Question.13.Score 0.377313812 0.124666936 0.31475509
## Question.14.Score 0.131553787 -0.045140584 0.28563988
## Question.15.Score 0.129135785 -0.177884684 0.14354911
## Question.16.Score 0.112865040 0.311965278 0.12918056
## Question.17.Score 0.040414981 -0.172947747 0.07705644
## Question.18.Score 0.383928623 0.216677338 0.45426365
## Question.19.Score 0.482931826 0.260950285 0.33363589
## Question.20.Score 0.555743529 0.398970028 0.45852548
## Question.21.Score 0.091820622 0.039467139 0.19884522
## Question.22.Score 0.014460141 -0.043820788 -0.11496087
## Question.23.Score 0.240990700 0.041376977 0.33850747
## Question.24.Score -0.147514491 -0.101540286 -0.19656908
## Question.25.Score 1.000000000 0.191589007 0.37937321
## Question.26.Score 0.191589007 1.000000000 0.33266379
## Question.27.Score 0.379373206 0.332663786 1.00000000
## Question.28.Score 0.005363667 0.129299265 0.32581382
## Question.29.Score 0.459665380 0.261388249 0.36029638
## Question.30.Score 0.048142763 -0.080605897 0.44794523
## Question.31.Score 0.304449714 0.250040479 0.54383330
## Question.32.Score 0.225495942 0.106264447 0.32566134
## Question.33.Score 0.371280111 0.178237401 0.35621204
## Question.34.Score 0.302265098 0.191920469 0.27492874
## Question.28.Score Question.29.Score Question.30.Score
## Question.1.Score 0.302616885 -0.06879692 0.31886476
## Question.2.Score 0.233286533 0.15513145 0.51735267
## Question.3.Score 0.321781351 0.25111410 0.35679282
## Question.4.Score 0.289144386 0.18075769 0.22153977
## Question.5.Score 0.181837138 0.06175462 0.07512057
## Question.6.Score 0.020522296 0.46102711 0.12139140
## Question.7.Score 0.006927903 0.12884247 0.16217234
## Question.8.Score 0.058457626 0.05497390 0.31419648
## Question.9.Score 0.155578735 0.35659057 0.26955180
## Question.10.Score 0.453702808 0.32115878 0.46905244
## Question.11.Score -0.094797218 0.13747252 0.02666856
## Question.12.Score -0.068866062 0.44162096 0.16227074
## Question.13.Score -0.024300358 0.15761219 -0.18706234
## Question.14.Score 0.076110074 0.22536361 0.20612287
## Question.15.Score 0.065765910 0.12597052 -0.24977445
## Question.16.Score 0.240814641 0.27240330 -0.03387101
## Question.17.Score -0.063767634 0.21944826 0.63440840
## Question.18.Score 0.423859359 0.06325467 0.20392562
## Question.19.Score 0.323947354 0.05969424 0.16571022
## Question.20.Score 0.077233165 0.06278774 0.02307938
## Question.21.Score 0.233892898 0.27410576 0.17187906
## Question.22.Score 0.109298177 0.17306743 0.13545966
## Question.23.Score 0.186931915 0.29094459 0.13722524
## Question.24.Score 0.183742506 -0.18117548 -0.11985289
## Question.25.Score 0.005363667 0.45966538 0.04814276
## Question.26.Score 0.129299265 0.26138825 -0.08060590
## Question.27.Score 0.325813824 0.36029638 0.44794523
## Question.28.Score 1.000000000 0.14525657 0.44411953
## Question.29.Score 0.145256568 1.00000000 0.26827301
## Question.30.Score 0.444119531 0.26827301 1.00000000
## Question.31.Score 0.261962248 0.30617356 0.30387106
## Question.32.Score 0.237072538 0.20743336 0.32155482
## Question.33.Score 0.301855688 0.29537116 0.16234286
## Question.34.Score 0.047415104 0.31886520 0.25388647
## Question.31.Score Question.32.Score Question.33.Score
## Question.1.Score 0.30137864 0.30858303 0.17788721
## Question.2.Score 0.31181869 0.21514138 0.28740747
## Question.3.Score 0.31792361 -0.12381963 0.07171567
## Question.4.Score 0.06879205 0.04587003 0.17267944
## Question.5.Score 0.37821807 0.08632457 0.34664171
## Question.6.Score 0.30680604 0.20472001 0.34853678
## Question.7.Score 0.23116559 0.17909534 0.04906197
## Question.8.Score 0.54101706 0.03743699 0.02844253
## Question.9.Score 0.22572127 -0.04484147 0.17858244
## Question.10.Score 0.38573053 0.25050004 0.33804378
## Question.11.Score 0.07146000 -0.06177103 -0.15543021
## Question.12.Score 0.31839022 0.23988023 0.35341631
## Question.13.Score 0.16803486 0.10167727 0.24546715
## Question.14.Score 0.09251372 0.02970097 0.05176796
## Question.15.Score 0.06608218 0.21774492 0.33144127
## Question.16.Score 0.29814697 0.26725055 0.26791034
## Question.17.Score -0.02410716 0.19974794 0.20747139
## Question.18.Score 0.37310613 0.06764699 0.31002902
## Question.19.Score 0.24877382 0.22104342 0.40127499
## Question.20.Score 0.37532526 0.11884377 0.30305384
## Question.21.Score 0.32730631 -0.01885277 0.20051516
## Question.22.Score 0.02361912 0.07843241 0.13937002
## Question.23.Score 0.41536260 0.29756191 0.38491922
## Question.24.Score 0.03636693 -0.28338728 -0.08641284
## Question.25.Score 0.30444971 0.22549594 0.37128011
## Question.26.Score 0.25004048 0.10626445 0.17823740
## Question.27.Score 0.54383330 0.32566134 0.35621204
## Question.28.Score 0.26196225 0.23707254 0.30185569
## Question.29.Score 0.30617356 0.20743336 0.29537116
## Question.30.Score 0.30387106 0.32155482 0.16234286
## Question.31.Score 1.00000000 0.30316744 0.23892999
## Question.32.Score 0.30316744 1.00000000 0.57820420
## Question.33.Score 0.23892999 0.57820420 1.00000000
## Question.34.Score 0.41104256 0.29716344 0.32277934
## Question.34.Score
## Question.1.Score 0.050491063
## Question.2.Score 0.278294536
## Question.3.Score 0.201533772
## Question.4.Score 0.225107737
## Question.5.Score 0.229368892
## Question.6.Score 0.214718736
## Question.7.Score -0.013187440
## Question.8.Score 0.219917278
## Question.9.Score 0.014559247
## Question.10.Score 0.365565606
## Question.11.Score 0.198235085
## Question.12.Score 0.441593022
## Question.13.Score 0.199809517
## Question.14.Score 0.056413080
## Question.15.Score 0.074888732
## Question.16.Score 0.047658190
## Question.17.Score 0.390440397
## Question.18.Score 0.340039384
## Question.19.Score 0.160484384
## Question.20.Score 0.276789658
## Question.21.Score 0.270744658
## Question.22.Score -0.087307723
## Question.23.Score 0.107769056
## Question.24.Score -0.004763364
## Question.25.Score 0.302265098
## Question.26.Score 0.191920469
## Question.27.Score 0.274928740
## Question.28.Score 0.047415104
## Question.29.Score 0.318865203
## Question.30.Score 0.253886475
## Question.31.Score 0.411042561
## Question.32.Score 0.297163437
## Question.33.Score 0.322779340
## Question.34.Score 1.000000000
Before we do so, lets get a notion of the typical variation of correlations :
cor_list <- lapply(
seq_len(nrow(cor_matrix)),
function(i) cor_matrix[i, -i]
)
names(cor_list) <- paste0("Q", seq_along(cor_list))
sd <- lapply(cor_list, function(x){
v <- c(sd(x))
names(v) <- c("sd")
v
})
mu <- mean(unlist(sd))
sigma <- sd(unlist(sd))
hist(unlist(sd), freq=FALSE, main = "SD of Correlations")
curve(
dnorm(x, mean = mu, sd = sigma),
add = TRUE,
col = "red"
)
bsc_sum <-
lapply(cor_list, function(x){
v <- c(mean(x), sd(x))
names(v) <- c("mean", "sd")
v
})
lapply(seq_along(cor_list), function(i) {
x <- cor_list[[i]]
stats <- bsc_sum[[i]]
hist(
x,
main = paste("Correlation Hist:", names(cor_list)[i]),
xlab = "Correlation"
)
legend(
"topright",
legend = c(
paste("Mean =", round(stats["mean"], 3)),
paste("SD =", round(stats["sd"], 3))
),
bty = "n"
)
})
What happens if I model per question Score to overall exam performance? What does that mean? Wont i get R^2 = 1?
mdl_mat <- cbind(binary_matrix, df$Total.Score)
fct_mat <- binary_matrix |> mutate(across(everything(), factor))
mdl_mat <- cbind(df$Total.Score, fct_mat)
colnames(mdl_mat)[1] <- "Total.Score" #whoops
mdl <- lm(Total.Score~., dat=mdl_mat)
paste("r.squared val: ",summary(mdl)$r.squared)
## [1] "r.squared val: 1"
plot(mdl, which = 2)
The error is exactly normally distributed
Latent Variable : Statistical Reasoning ( Midterm 1 )
Probability
Regression
Design & Experimentation