Assignment Objectives

  • Develop a clear technical understanding of nonparametric cumulative distribution function (CDF) estimation and various kernel density estimators.

  • Translate mathematical formulas into R functions and apply them to solve related problems.

  • Create effective visualizations to demonstrate your understanding of key concepts in the following questions.


Question 1: Cumulative Distribution Function (CDF) Estimation

The following failure times (in hours) were observed for 8 electronic components:

23, 45, 67, 89, 112, 156, 189, 245
  1. Write an R function implementing the ECDF \(\hat{F}_n(t)\) according to its mathematical definition. Validate your implementation using R’s ecdf() function on the given data, with comparison based on their step functions.

  2. A colleague claims that the probability of failure before 100 hours is 0.5 based on these data. Do you agree? Explain your reasoning using the empirical cumulative distribution function (ECDF).


Question 2: Density Function Estimation

Consider the following failure times from a mechanical system:

12.3, 14.7, 15.2, 16.8, 18.1, 19.4, 20.6, 22.3, 23.9, 25.4
  1. Create a histogram of the data using 3 equally spaced bins. What is the estimated density in each bin? Describe the shape of the histogram’s distribution.

  2. Write an R function that computes kernel density estimates using a Gaussian kernel with \(h=2\). Validate your implementation against R’s built-in density() function.

\[ \hat{f}_h(t) = \frac{1}{nh}\sum_{i=1}^n K\left( \frac{t-t_i}{h}\right), \ \ \text{ where } \ \ K(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2}. \]

  1. Write a custom R function that computes kernel density estimates using the Epanechnikov kernel with \(h=2\). Validate your implementation by comparing results with R’s built-in density() function for Gaussian kernel estimation.

\[ \hat{f}_h(t) = \frac{1}{nh}\sum_{i=1}^n K\left( \frac{t-t_i}{h}\right), \ \ \text{ where } \ \ K(u) = \frac{3}{4}(1 - u^2) \ \ \text{ for } \ \ |u| \le 1. \]

  1. How does the choice of kernel (Gaussian vs. Epanechnikov) affect the density estimate? For both kernel estimators applied to this dataset, what happens when we select \(h=1.5\) versus \(h=2.5\)?
LS0tDQp0aXRsZTogIkFzc2lnbm1lbnQgMTogRXN0aW1hdGluZyBDREYgYW5kIFBERiINCmF1dGhvcjogIllvdXIgTmFtZSAiDQpkYXRlOiAiIER1ZTogIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50OiANCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogNA0KICAgIHRvY19mbG9hdDogeWVzDQogICAgbnVtYmVyX3NlY3Rpb25zOiBubw0KICAgIHRvY19jb2xsYXBzZWQ6IHllcw0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIHNtb290aF9zY3JvbGw6IHllcw0KICAgIHRoZW1lOiBsdW1lbg0KICBwZGZfZG9jdW1lbnQ6IA0KICAgIHRvYzogeWVzDQogICAgdG9jX2RlcHRoOiA0DQogICAgZmlnX2NhcHRpb246IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgZmlnX3dpZHRoOiAzDQogICAgZmlnX2hlaWdodDogMw0KICB3b3JkX2RvY3VtZW50OiANCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogNA0KICAgIGZpZ19jYXB0aW9uOiB5ZXMNCiAgICBrZWVwX21kOiB5ZXMNCmVkaXRvcl9vcHRpb25zOiANCiAgY2h1bmtfb3V0cHV0X3R5cGU6IGlubGluZQ0KLS0tDQoNCmBgYHtjc3MsIGVjaG8gPSBGQUxTRX0NCiNUT0M6OmJlZm9yZSB7DQogIGNvbnRlbnQ6ICJUYWJsZSBvZiBDb250ZW50cyI7DQogIGZvbnQtd2VpZ2h0OiBib2xkOw0KICBmb250LXNpemU6IDEuMmVtOw0KICBkaXNwbGF5OiBibG9jazsNCiAgY29sb3I6IG5hdnk7DQogIG1hcmdpbi1ib3R0b206IDEwcHg7DQp9DQoNCg0KZGl2I1RPQyBsaSB7ICAgICAvKiB0YWJsZSBvZiBjb250ZW50ICAqLw0KICAgIGxpc3Qtc3R5bGU6dXBwZXItcm9tYW47DQogICAgYmFja2dyb3VuZC1pbWFnZTpub25lOw0KICAgIGJhY2tncm91bmQtcmVwZWF0Om5vbmU7DQogICAgYmFja2dyb3VuZC1wb3NpdGlvbjowOw0KfQ0KDQpoMS50aXRsZSB7ICAgIC8qIGxldmVsIDEgaGVhZGVyIG9mIHRpdGxlICAqLw0KICBmb250LXNpemU6IDIycHg7DQogIGZvbnQtd2VpZ2h0OiBib2xkOw0KICBjb2xvcjogRGFya1JlZDsNCiAgdGV4dC1hbGlnbjogY2VudGVyOw0KICBmb250LWZhbWlseTogIkdpbGwgU2FucyIsIHNhbnMtc2VyaWY7DQp9DQoNCmg0LmF1dGhvciB7IC8qIEhlYWRlciA0IC0gYW5kIHRoZSBhdXRob3IgYW5kIGRhdGEgaGVhZGVycyB1c2UgdGhpcyB0b28gICovDQogIGZvbnQtc2l6ZTogMTVweDsNCiAgZm9udC13ZWlnaHQ6IGJvbGQ7DQogIGZvbnQtZmFtaWx5OiBzeXN0ZW0tdWk7DQogIGNvbG9yOiBuYXZ5Ow0KICB0ZXh0LWFsaWduOiBjZW50ZXI7DQp9DQoNCmg0LmRhdGUgeyAvKiBIZWFkZXIgNCAtIGFuZCB0aGUgYXV0aG9yIGFuZCBkYXRhIGhlYWRlcnMgdXNlIHRoaXMgdG9vICAqLw0KICBmb250LXNpemU6IDE4cHg7DQogIGZvbnQtd2VpZ2h0OiBib2xkOw0KICBmb250LWZhbWlseTogIkdpbGwgU2FucyIsIHNhbnMtc2VyaWY7DQogIGNvbG9yOiBEYXJrQmx1ZTsNCiAgdGV4dC1hbGlnbjogY2VudGVyOw0KfQ0KDQpoMSB7IC8qIEhlYWRlciAxIC0gYW5kIHRoZSBhdXRob3IgYW5kIGRhdGEgaGVhZGVycyB1c2UgdGhpcyB0b28gICovDQogICAgZm9udC1zaXplOiAyMHB4Ow0KICAgIGZvbnQtd2VpZ2h0OiBib2xkOw0KICAgIGZvbnQtZmFtaWx5OiAiVGltZXMgTmV3IFJvbWFuIiwgVGltZXMsIHNlcmlmOw0KICAgIGNvbG9yOiBkYXJrcmVkOw0KICAgIHRleHQtYWxpZ246IGNlbnRlcjsNCn0NCg0KaDIgeyAvKiBIZWFkZXIgMiAtIGFuZCB0aGUgYXV0aG9yIGFuZCBkYXRhIGhlYWRlcnMgdXNlIHRoaXMgdG9vICAqLw0KICAgIGZvbnQtc2l6ZTogMThweDsNCiAgICBmb250LXdlaWdodDogYm9sZDsNCiAgICBmb250LWZhbWlseTogIlRpbWVzIE5ldyBSb21hbiIsIFRpbWVzLCBzZXJpZjsNCiAgICBjb2xvcjogbmF2eTsNCiAgICB0ZXh0LWFsaWduOiBsZWZ0Ow0KfQ0KDQpoMyB7IC8qIEhlYWRlciAzIC0gYW5kIHRoZSBhdXRob3IgYW5kIGRhdGEgaGVhZGVycyB1c2UgdGhpcyB0b28gICovDQogICAgZm9udC1zaXplOiAxNnB4Ow0KICAgIGZvbnQtd2VpZ2h0OiBib2xkOw0KICAgIGZvbnQtZmFtaWx5OiAiVGltZXMgTmV3IFJvbWFuIiwgVGltZXMsIHNlcmlmOw0KICAgIGNvbG9yOiBuYXZ5Ow0KICAgIHRleHQtYWxpZ246IGxlZnQ7DQp9DQoNCmg0IHsgLyogSGVhZGVyIDQgLSBhbmQgdGhlIGF1dGhvciBhbmQgZGF0YSBoZWFkZXJzIHVzZSB0aGlzIHRvbyAgKi8NCiAgICBmb250LXNpemU6IDE0cHg7DQogIGZvbnQtd2VpZ2h0OiBib2xkOw0KICAgIGZvbnQtZmFtaWx5OiAiVGltZXMgTmV3IFJvbWFuIiwgVGltZXMsIHNlcmlmOw0KICAgIGNvbG9yOiBkYXJrcmVkOw0KICAgIHRleHQtYWxpZ246IGxlZnQ7DQp9DQoNCi8qIEFkZCBkb3RzIGFmdGVyIG51bWJlcmVkIGhlYWRlcnMgKi8NCi5oZWFkZXItc2VjdGlvbi1udW1iZXI6OmFmdGVyIHsNCiAgY29udGVudDogIi4iOw0KDQpib2R5IHsgYmFja2dyb3VuZC1jb2xvcjp3aGl0ZTsgfQ0KDQouaGlnaGxpZ2h0bWUgeyBiYWNrZ3JvdW5kLWNvbG9yOnllbGxvdzsgfQ0KDQpwIHsgYmFja2dyb3VuZC1jb2xvcjp3aGl0ZTsgfQ0KDQp9DQpgYGANCg0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQojIGNvZGUgY2h1bmsgc3BlY2lmaWVzIHdoZXRoZXIgdGhlIFIgY29kZSwgd2FybmluZ3MsIGFuZCBvdXRwdXQgDQojIHdpbGwgYmUgaW5jbHVkZWQgaW4gdGhlIG91dHB1dCBmaWxlcy4NCmlmICghcmVxdWlyZSgia25pdHIiKSkgew0KICAgaW5zdGFsbC5wYWNrYWdlcygia25pdHIiKQ0KICAgbGlicmFyeShrbml0cikNCn0NCmlmICghcmVxdWlyZSgicGFuZGVyIikpIHsNCiAgIGluc3RhbGwucGFja2FnZXMoInBhbmRlciIpDQogICBsaWJyYXJ5KHBhbmRlcikNCn0NCmlmICghcmVxdWlyZSgiZ2dwbG90MiIpKSB7DQogIGluc3RhbGwucGFja2FnZXMoImdncGxvdDIiKQ0KICBsaWJyYXJ5KGdncGxvdDIpDQp9DQppZiAoIXJlcXVpcmUoInRpZHl2ZXJzZSIpKSB7DQogIGluc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpDQogIGxpYnJhcnkodGlkeXZlcnNlKQ0KfQ0KDQppZiAoIXJlcXVpcmUoInBsb3RseSIpKSB7DQogIGluc3RhbGwucGFja2FnZXMoInBsb3RseSIpDQogIGxpYnJhcnkocGxvdGx5KQ0KfQ0KIyMjIw0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFLCAgICAgICAjIGluY2x1ZGUgY29kZSBjaHVuayBpbiB0aGUgb3V0cHV0IGZpbGUNCiAgICAgICAgICAgICAgICAgICAgICB3YXJuaW5nID0gRkFMU0UsICAgIyBzb21ldGltZXMsIHlvdSBjb2RlIG1heSBwcm9kdWNlIHdhcm5pbmcgbWVzc2FnZXMsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgeW91IGNhbiBjaG9vc2UgdG8gaW5jbHVkZSB0aGUgd2FybmluZyBtZXNzYWdlcyBpbg0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIHRoZSBvdXRwdXQgZmlsZS4gDQogICAgICAgICAgICAgICAgICAgICAgcmVzdWx0cyA9IFRSVUUsICAgICMgeW91IGNhbiBhbHNvIGRlY2lkZSB3aGV0aGVyIHRvIGluY2x1ZGUgdGhlIG91dHB1dA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIGluIHRoZSBvdXRwdXQgZmlsZS4NCiAgICAgICAgICAgICAgICAgICAgICBtZXNzYWdlID0gRkFMU0UsDQogICAgICAgICAgICAgICAgICAgICAgY29tbWVudCA9IE5BDQogICAgICAgICAgICAgICAgICAgICAgKSAgDQpgYGANCiANCiBcDQogDQojIyAqKkFzc2lnbm1lbnQgT2JqZWN0aXZlcyoqIA0KDQoqIERldmVsb3AgYSBjbGVhciB0ZWNobmljYWwgdW5kZXJzdGFuZGluZyBvZiBub25wYXJhbWV0cmljIGN1bXVsYXRpdmUgZGlzdHJpYnV0aW9uIGZ1bmN0aW9uIChDREYpIGVzdGltYXRpb24gYW5kIHZhcmlvdXMga2VybmVsIGRlbnNpdHkgZXN0aW1hdG9ycy4NCg0KKiBUcmFuc2xhdGUgbWF0aGVtYXRpY2FsIGZvcm11bGFzIGludG8gUiBmdW5jdGlvbnMgYW5kIGFwcGx5IHRoZW0gdG8gc29sdmUgcmVsYXRlZCBwcm9ibGVtcy4NCg0KKiBDcmVhdGUgZWZmZWN0aXZlIHZpc3VhbGl6YXRpb25zIHRvIGRlbW9uc3RyYXRlIHlvdXIgdW5kZXJzdGFuZGluZyBvZiBrZXkgY29uY2VwdHMgaW4gdGhlIGZvbGxvd2luZyBxdWVzdGlvbnMuDQoNCg0KDQpcDQoNCiMjICoqUXVlc3Rpb24gMTogQ3VtdWxhdGl2ZSBEaXN0cmlidXRpb24gRnVuY3Rpb24gKENERikgRXN0aW1hdGlvbioqDQoNClRoZSBmb2xsb3dpbmcgZmFpbHVyZSB0aW1lcyAoaW4gaG91cnMpIHdlcmUgb2JzZXJ2ZWQgZm9yIDggZWxlY3Ryb25pYyBjb21wb25lbnRzOg0KDQo8Y2VudGVyPiAyMywgNDUsIDY3LCA4OSwgMTEyLCAxNTYsIDE4OSwgMjQ1ICA8L2NlbnRlcj4NCg0KYSkgV3JpdGUgYW4gUiBmdW5jdGlvbiBpbXBsZW1lbnRpbmcgdGhlIEVDREYgJFxoYXR7Rn1fbih0KSQgYWNjb3JkaW5nIHRvIGl0cyBtYXRoZW1hdGljYWwgZGVmaW5pdGlvbi4gVmFsaWRhdGUgeW91ciBpbXBsZW1lbnRhdGlvbiB1c2luZyBSJ3MgZWNkZigpIGZ1bmN0aW9uIG9uIHRoZSBnaXZlbiBkYXRhLCB3aXRoIGNvbXBhcmlzb24gYmFzZWQgb24gdGhlaXIgc3RlcCBmdW5jdGlvbnMuDQoNCmIpIEEgY29sbGVhZ3VlIGNsYWltcyB0aGF0IHRoZSBwcm9iYWJpbGl0eSBvZiBmYWlsdXJlIGJlZm9yZSAxMDAgaG91cnMgaXMgMC41IGJhc2VkIG9uIHRoZXNlIGRhdGEuIERvIHlvdSBhZ3JlZT8gRXhwbGFpbiB5b3VyIHJlYXNvbmluZyB1c2luZyB0aGUgZW1waXJpY2FsIGN1bXVsYXRpdmUgZGlzdHJpYnV0aW9uIGZ1bmN0aW9uIChFQ0RGKS4NCg0KDQpcDQoNCiMjICoqUXVlc3Rpb24gMjogRGVuc2l0eSBGdW5jdGlvbiBFc3RpbWF0aW9uKioNCg0KQ29uc2lkZXIgdGhlIGZvbGxvd2luZyBmYWlsdXJlIHRpbWVzIGZyb20gYSBtZWNoYW5pY2FsIHN5c3RlbToNCg0KPGNlbnRlcj4gMTIuMywgMTQuNywgMTUuMiwgMTYuOCwgMTguMSwgMTkuNCwgMjAuNiwgMjIuMywgMjMuOSwgMjUuNCA8L2NlbnRlcj4NCg0KYSkgQ3JlYXRlIGEgaGlzdG9ncmFtIG9mIHRoZSBkYXRhIHVzaW5nIDMgZXF1YWxseSBzcGFjZWQgYmlucy4gV2hhdCBpcyB0aGUgZXN0aW1hdGVkIGRlbnNpdHkgaW4gZWFjaCBiaW4/IERlc2NyaWJlIHRoZSBzaGFwZSBvZiB0aGUgaGlzdG9ncmFtJ3MgZGlzdHJpYnV0aW9uLg0KDQpiKSBXcml0ZSBhbiBSIGZ1bmN0aW9uIHRoYXQgY29tcHV0ZXMga2VybmVsIGRlbnNpdHkgZXN0aW1hdGVzIHVzaW5nIGEgR2F1c3NpYW4ga2VybmVsIHdpdGggJGg9MiQuIFZhbGlkYXRlIHlvdXIgaW1wbGVtZW50YXRpb24gYWdhaW5zdCBSJ3MgYnVpbHQtaW4gZGVuc2l0eSgpIGZ1bmN0aW9uLg0KDQokJA0KXGhhdHtmfV9oKHQpID0gXGZyYWN7MX17bmh9XHN1bV97aT0xfV5uIEtcbGVmdCggXGZyYWN7dC10X2l9e2h9XHJpZ2h0KSwgXCBcIFx0ZXh0eyB3aGVyZSB9IFwgXCBLKHUpID0gXGZyYWN7MX17XHNxcnR7MlxwaX19IGVeey11XjIvMn0uDQokJA0KDQpjKSBXcml0ZSBhIGN1c3RvbSBSIGZ1bmN0aW9uIHRoYXQgY29tcHV0ZXMga2VybmVsIGRlbnNpdHkgZXN0aW1hdGVzIHVzaW5nIHRoZSBFcGFuZWNobmlrb3Yga2VybmVsIHdpdGggJGg9MiQuIFZhbGlkYXRlIHlvdXIgaW1wbGVtZW50YXRpb24gYnkgY29tcGFyaW5nIHJlc3VsdHMgd2l0aCBSJ3MgYnVpbHQtaW4gZGVuc2l0eSgpIGZ1bmN0aW9uIGZvciBHYXVzc2lhbiBrZXJuZWwgZXN0aW1hdGlvbi4NCg0KJCQNClxoYXR7Zn1faCh0KSA9IFxmcmFjezF9e25ofVxzdW1fe2k9MX1ebiBLXGxlZnQoIFxmcmFje3QtdF9pfXtofVxyaWdodCksIFwgXCBcdGV4dHsgd2hlcmUgfSBcIFwgSyh1KSA9IFxmcmFjezN9ezR9KDEgLSB1XjIpIFwgXCBcdGV4dHsgZm9yIH0gXCBcIHx1fCBcbGUgMS4NCiQkDQoNCmQpIEhvdyBkb2VzIHRoZSBjaG9pY2Ugb2Yga2VybmVsIChHYXVzc2lhbiB2cy4gRXBhbmVjaG5pa292KSBhZmZlY3QgdGhlIGRlbnNpdHkgZXN0aW1hdGU/IEZvciBib3RoIGtlcm5lbCBlc3RpbWF0b3JzIGFwcGxpZWQgdG8gdGhpcyBkYXRhc2V0LCB3aGF0IGhhcHBlbnMgd2hlbiB3ZSBzZWxlY3QgJGg9MS41JCB2ZXJzdXMgJGg9Mi41JD8NCg0KDQoNCg0KDQoNCg==