library(palmerpenguins)
library(tidyverse)HDS 2.3-2.4
Begin by loading the tidyverse and palmerpenguins packages above.
Take a glimpse of the penguins data and determine which of the variables are categorical and which are quantitative:
glimpse(penguins)Rows: 344
Columns: 8
$ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel…
$ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse…
$ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, …
$ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, …
$ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186…
$ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, …
$ sex <fct> male, female, female, NA, female, male, female, male…
$ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007…
Make a list of the categorical variables:
- species
- island
- sex
- year
Make a list of the quantitative variables:
- bill length
- bill depth
- flipper
- body
Summarizing Variables
Create a code chunk that summarizes the number of penguins by species:
count(penguins, species)# A tibble: 3 × 2
species n
<fct> <int>
1 Adelie 152
2 Chinstrap 68
3 Gentoo 124
Create a code chunk that summarizes the number of penguins by island:
count(penguins, island)# A tibble: 3 × 2
island n
<fct> <int>
1 Biscoe 168
2 Dream 124
3 Torgersen 52
Create a code chunck that summarizes the number of penguins by species and island:
count(penguins, species, island)# A tibble: 5 × 3
species island n
<fct> <fct> <int>
1 Adelie Biscoe 44
2 Adelie Dream 56
3 Adelie Torgersen 52
4 Chinstrap Dream 68
5 Gentoo Biscoe 124
Create a code chunk that summarizes body_mass_g. It should produce a data frame with the mean, median, minimum, maximum, and standard deviation of the body_mass_q:
summarize(
penguins,
Mean_Mass = mean(body_mass_g, na.rm = TRUE),
Median_Mass = median(body_mass_g, na.rm = TRUE),
Min_Mass = min(body_mass_g, na.rm = TRUE),
Max_Mass = max(body_mass_g, na.rm = TRUE),
SD_Mass = sd(body_mass_g, na.rm = TRUE)
)# A tibble: 1 × 5
Mean_Mass Median_Mass Min_Mass Max_Mass SD_Mass
<dbl> <dbl> <int> <int> <dbl>
1 4202. 4050 2700 6300 802.