# Load required packages
library(tidyverse) # Data manipulation (dplyr, ggplot2, etc.)
library(NHANES) # NHANES dataset
library(knitr) # For professional table output
library(kableExtra) # Enhanced tablesTroubleshooting: If you see an error, run this once:
Then reload: library(NHANES)
#Loading and Exploring the NHANES Data
## # A tibble: 10 × 76
## ID SurveyYr Gender Age AgeDecade AgeMonths Race1 Race3 Education MaritalStatus HHIncome
## <int> <fct> <fct> <int> <fct> <int> <fct> <fct> <fct> <fct> <fct>
## 1 51624 2009_10 male 34 " 30-39" 409 White <NA> High School Married 25000-349…
## 2 51624 2009_10 male 34 " 30-39" 409 White <NA> High School Married 25000-349…
## 3 51624 2009_10 male 34 " 30-39" 409 White <NA> High School Married 25000-349…
## 4 51625 2009_10 male 4 " 0-9" 49 Other <NA> <NA> <NA> 20000-249…
## 5 51630 2009_10 female 49 " 40-49" 596 White <NA> Some College LivePartner 35000-449…
## 6 51638 2009_10 male 9 " 0-9" 115 White <NA> <NA> <NA> 75000-999…
## 7 51646 2009_10 male 8 " 0-9" 101 White <NA> <NA> <NA> 55000-649…
## 8 51647 2009_10 female 45 " 40-49" 541 White <NA> College Grad Married 75000-999…
## 9 51647 2009_10 female 45 " 40-49" 541 White <NA> College Grad Married 75000-999…
## 10 51647 2009_10 female 45 " 40-49" 541 White <NA> College Grad Married 75000-999…
## # ℹ 65 more variables: HHIncomeMid <int>, Poverty <dbl>, HomeRooms <int>, HomeOwn <fct>,
## # Work <fct>, Weight <dbl>, Length <dbl>, HeadCirc <dbl>, Height <dbl>, BMI <dbl>,
## # BMICatUnder20yrs <fct>, BMI_WHO <fct>, Pulse <int>, BPSysAve <int>, BPDiaAve <int>,
## # BPSys1 <int>, BPDia1 <int>, BPSys2 <int>, BPDia2 <int>, BPSys3 <int>, BPDia3 <int>,
## # Testosterone <dbl>, DirectChol <dbl>, TotChol <dbl>, UrineVol1 <int>, UrineFlow1 <dbl>,
## # UrineVol2 <int>, UrineFlow2 <dbl>, Diabetes <fct>, DiabetesAge <int>, HealthGen <fct>,
## # DaysPhysHlthBad <int>, DaysMentHlthBad <int>, LittleInterest <fct>, Depressed <fct>, …
## tibble [10,000 × 76] (S3: tbl_df/tbl/data.frame)
## $ ID : int [1:10000] 51624 51624 51624 51625 51630 51638 51646 51647 51647 51647 ...
## $ SurveyYr : Factor w/ 2 levels "2009_10","2011_12": 1 1 1 1 1 1 1 1 1 1 ...
## $ Gender : Factor w/ 2 levels "female","male": 2 2 2 2 1 2 2 1 1 1 ...
## $ Age : int [1:10000] 34 34 34 4 49 9 8 45 45 45 ...
## $ AgeDecade : Factor w/ 8 levels " 0-9"," 10-19",..: 4 4 4 1 5 1 1 5 5 5 ...
## $ AgeMonths : int [1:10000] 409 409 409 49 596 115 101 541 541 541 ...
## $ Race1 : Factor w/ 5 levels "Black","Hispanic",..: 4 4 4 5 4 4 4 4 4 4 ...
## $ Race3 : Factor w/ 6 levels "Asian","Black",..: NA NA NA NA NA NA NA NA NA NA ...
## $ Education : Factor w/ 5 levels "8th Grade","9 - 11th Grade",..: 3 3 3 NA 4 NA NA 5 5 5 ...
## $ MaritalStatus : Factor w/ 6 levels "Divorced","LivePartner",..: 3 3 3 NA 2 NA NA 3 3 3 ...
## $ HHIncome : Factor w/ 12 levels " 0-4999"," 5000-9999",..: 6 6 6 5 7 11 9 11 11 11 ...
## $ HHIncomeMid : int [1:10000] 30000 30000 30000 22500 40000 87500 60000 87500 87500 87500 ...
## $ Poverty : num [1:10000] 1.36 1.36 1.36 1.07 1.91 1.84 2.33 5 5 5 ...
## $ HomeRooms : int [1:10000] 6 6 6 9 5 6 7 6 6 6 ...
## $ HomeOwn : Factor w/ 3 levels "Own","Rent","Other": 1 1 1 1 2 2 1 1 1 1 ...
## $ Work : Factor w/ 3 levels "Looking","NotWorking",..: 2 2 2 NA 2 NA NA 3 3 3 ...
## $ Weight : num [1:10000] 87.4 87.4 87.4 17 86.7 29.8 35.2 75.7 75.7 75.7 ...
## $ Length : num [1:10000] NA NA NA NA NA NA NA NA NA NA ...
## $ HeadCirc : num [1:10000] NA NA NA NA NA NA NA NA NA NA ...
## $ Height : num [1:10000] 165 165 165 105 168 ...
## $ BMI : num [1:10000] 32.2 32.2 32.2 15.3 30.6 ...
## $ BMICatUnder20yrs: Factor w/ 4 levels "UnderWeight",..: NA NA NA NA NA NA NA NA NA NA ...
## $ BMI_WHO : Factor w/ 4 levels "12.0_18.5","18.5_to_24.9",..: 4 4 4 1 4 1 2 3 3 3 ...
## $ Pulse : int [1:10000] 70 70 70 NA 86 82 72 62 62 62 ...
## $ BPSysAve : int [1:10000] 113 113 113 NA 112 86 107 118 118 118 ...
## $ BPDiaAve : int [1:10000] 85 85 85 NA 75 47 37 64 64 64 ...
## $ BPSys1 : int [1:10000] 114 114 114 NA 118 84 114 106 106 106 ...
## $ BPDia1 : int [1:10000] 88 88 88 NA 82 50 46 62 62 62 ...
## $ BPSys2 : int [1:10000] 114 114 114 NA 108 84 108 118 118 118 ...
## $ BPDia2 : int [1:10000] 88 88 88 NA 74 50 36 68 68 68 ...
## $ BPSys3 : int [1:10000] 112 112 112 NA 116 88 106 118 118 118 ...
## $ BPDia3 : int [1:10000] 82 82 82 NA 76 44 38 60 60 60 ...
## $ Testosterone : num [1:10000] NA NA NA NA NA NA NA NA NA NA ...
## $ DirectChol : num [1:10000] 1.29 1.29 1.29 NA 1.16 1.34 1.55 2.12 2.12 2.12 ...
## $ TotChol : num [1:10000] 3.49 3.49 3.49 NA 6.7 4.86 4.09 5.82 5.82 5.82 ...
## $ UrineVol1 : int [1:10000] 352 352 352 NA 77 123 238 106 106 106 ...
## $ UrineFlow1 : num [1:10000] NA NA NA NA 0.094 ...
## $ UrineVol2 : int [1:10000] NA NA NA NA NA NA NA NA NA NA ...
## $ UrineFlow2 : num [1:10000] NA NA NA NA NA NA NA NA NA NA ...
## $ Diabetes : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ DiabetesAge : int [1:10000] NA NA NA NA NA NA NA NA NA NA ...
## $ HealthGen : Factor w/ 5 levels "Excellent","Vgood",..: 3 3 3 NA 3 NA NA 2 2 2 ...
## $ DaysPhysHlthBad : int [1:10000] 0 0 0 NA 0 NA NA 0 0 0 ...
## $ DaysMentHlthBad : int [1:10000] 15 15 15 NA 10 NA NA 3 3 3 ...
## $ LittleInterest : Factor w/ 3 levels "None","Several",..: 3 3 3 NA 2 NA NA 1 1 1 ...
## $ Depressed : Factor w/ 3 levels "None","Several",..: 2 2 2 NA 2 NA NA 1 1 1 ...
## $ nPregnancies : int [1:10000] NA NA NA NA 2 NA NA 1 1 1 ...
## $ nBabies : int [1:10000] NA NA NA NA 2 NA NA NA NA NA ...
## $ Age1stBaby : int [1:10000] NA NA NA NA 27 NA NA NA NA NA ...
## $ SleepHrsNight : int [1:10000] 4 4 4 NA 8 NA NA 8 8 8 ...
## $ SleepTrouble : Factor w/ 2 levels "No","Yes": 2 2 2 NA 2 NA NA 1 1 1 ...
## $ PhysActive : Factor w/ 2 levels "No","Yes": 1 1 1 NA 1 NA NA 2 2 2 ...
## $ PhysActiveDays : int [1:10000] NA NA NA NA NA NA NA 5 5 5 ...
## $ TVHrsDay : Factor w/ 7 levels "0_hrs","0_to_1_hr",..: NA NA NA NA NA NA NA NA NA NA ...
## $ CompHrsDay : Factor w/ 7 levels "0_hrs","0_to_1_hr",..: NA NA NA NA NA NA NA NA NA NA ...
## $ TVHrsDayChild : int [1:10000] NA NA NA 4 NA 5 1 NA NA NA ...
## $ CompHrsDayChild : int [1:10000] NA NA NA 1 NA 0 6 NA NA NA ...
## $ Alcohol12PlusYr : Factor w/ 2 levels "No","Yes": 2 2 2 NA 2 NA NA 2 2 2 ...
## $ AlcoholDay : int [1:10000] NA NA NA NA 2 NA NA 3 3 3 ...
## $ AlcoholYear : int [1:10000] 0 0 0 NA 20 NA NA 52 52 52 ...
## $ SmokeNow : Factor w/ 2 levels "No","Yes": 1 1 1 NA 2 NA NA NA NA NA ...
## $ Smoke100 : Factor w/ 2 levels "No","Yes": 2 2 2 NA 2 NA NA 1 1 1 ...
## $ Smoke100n : Factor w/ 2 levels "Non-Smoker","Smoker": 2 2 2 NA 2 NA NA 1 1 1 ...
## $ SmokeAge : int [1:10000] 18 18 18 NA 38 NA NA NA NA NA ...
## $ Marijuana : Factor w/ 2 levels "No","Yes": 2 2 2 NA 2 NA NA 2 2 2 ...
## $ AgeFirstMarij : int [1:10000] 17 17 17 NA 18 NA NA 13 13 13 ...
## $ RegularMarij : Factor w/ 2 levels "No","Yes": 1 1 1 NA 1 NA NA 1 1 1 ...
## $ AgeRegMarij : int [1:10000] NA NA NA NA NA NA NA NA NA NA ...
## $ HardDrugs : Factor w/ 2 levels "No","Yes": 2 2 2 NA 2 NA NA 1 1 1 ...
## $ SexEver : Factor w/ 2 levels "No","Yes": 2 2 2 NA 2 NA NA 2 2 2 ...
## $ SexAge : int [1:10000] 16 16 16 NA 12 NA NA 13 13 13 ...
## $ SexNumPartnLife : int [1:10000] 8 8 8 NA 10 NA NA 20 20 20 ...
## $ SexNumPartYear : int [1:10000] 1 1 1 NA 1 NA NA 0 0 0 ...
## $ SameSex : Factor w/ 2 levels "No","Yes": 1 1 1 NA 2 NA NA 2 2 2 ...
## $ SexOrientation : Factor w/ 3 levels "Bisexual","Heterosexual",..: 2 2 2 NA 2 NA NA 1 1 1 ...
## $ PregnantNow : Factor w/ 3 levels "Yes","No","Unknown": NA NA NA NA NA NA NA NA NA NA ...
## [1] 10000 76
# Select key variables for analysis
nhanes_analysis <- NHANES %>%
dplyr::select(
Education, # Education level
BPSys1, # Systolic blood pressure (1st reading)
BPDia1, # Diastolic blood pressure (1st reading)
) %>%
# Create a binary hypertension indicator (BPSys1 >= 140 OR BPDia1 >= 90)
mutate(
Hypertension = factor(ifelse(BPSys1 >= 140 | BPDia1 >= 90, "Yes", "No"))
)
# View the processed dataset
head(nhanes_analysis, 10)## # A tibble: 10 × 4
## Education BPSys1 BPDia1 Hypertension
## <fct> <int> <int> <fct>
## 1 High School 114 88 No
## 2 High School 114 88 No
## 3 High School 114 88 No
## 4 <NA> NA NA <NA>
## 5 Some College 118 82 No
## 6 <NA> 84 50 No
## 7 <NA> 114 46 No
## 8 College Grad 106 62 No
## 9 College Grad 106 62 No
## 10 College Grad 106 62 No
## [1] 10000 4
Using the nhanes_analysis data, explore:
“How does hypertension prevalence vary by education level?”
Hypertension is most prevalent among individuals with lower education. The data shows that 8th graders have the highest prevalence (28.3%) compared to those with a higher level of education where the prevalence rate in college graduates is 13.1%. The data shows that as education increases, hypertension decreases.
Write code to:
# Your code here:
health_by_education <- nhanes_analysis %>%
group_by(Education) %>%
summarise(
N = n(),
Mean_SysBP = round(mean(BPSys1, na.rm = TRUE), 2),
Pct_Hypertension = round(
sum(Hypertension == "Yes", na.rm = TRUE) / sum(!is.na(Hypertension)) * 100, 2)
)
print(health_by_education)## # A tibble: 6 × 4
## Education N Mean_SysBP Pct_Hypertension
## <fct> <int> <dbl> <dbl>
## 1 8th Grade 451 128. 28.3
## 2 9 - 11th Grade 888 124. 17.3
## 3 High School 1517 124. 18.9
## 4 Some College 2267 122. 16.6
## 5 College Grad 2098 119. 13.1
## 6 <NA> 2779 106. 0.72
Create a bar chart showing hypertension by education level:
# Your visualization here:
health_by_education %>%
filter(!is.na(Education)) %>%
ggplot(aes(x = Education, y = Pct_Hypertension)) +
geom_col(fill = "steelblue", alpha = 0.7) +
geom_text(aes(label = paste0(Pct_Hypertension, "%")),
vjust = -0.5, size = 3) +
labs(
title = "Hypertension Prevalence by Education Level",
x = "Education Level",
y = "Percent with Hypertension (%)",
caption = "Source: NHANES"
) +
ylim(0, 50) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))Write 2-3 sentences:
“What does this pattern tell us about health disparities and social determinants?”
The data shows us that individuals with the highest prevalence are those in lower education and as education increases, hypertension steadily decreases. This pattern shows that health disparities and social determinants of health both play a role in cardiovascular health.Factors such as income, access to healthcare, family status/conditions, and stress, can all contribute to cardiovascular health and overall health. This type of data shows us that we need to create interventions that can help prevent hypertension among lower education attainment.