Data Prep

Load Libraries

# if you haven't used a given package before, you'll need to download it first
# delete the "#" before the install function and run it to download
# then run the library function calling that package

#install.packages("naniar")

library(naniar) # for the gg_miss-upset() command

Import Data

Import the full project data into a dataframe, call it “df”. Replace ‘DOWLOADED FILE NAME’ with the actual file name of your dataset (either for the ARC or EAMMi2).

Note: If you named your folder something else, you will also need to replace ‘Data’ with whatever the name of your folder is where you saved the dataset in.

df <- read.csv(file="Data/arc_data_final_SP26.csv", header=T)

Viewing Data

These are commands useful for viewing a data frame.

# you can also click the object (the little table picture) in the environment tab to view it in a new window

names(df)  # all the variable name in the data frame
##  [1] "X"                    "gender"               "trans"               
##  [4] "sexual_orientation"   "ethnicity"            "relationship_status" 
##  [7] "age"                  "urban_rural"          "income"              
## [10] "education"            "employment"           "treatment"           
## [13] "health"               "mhealth"              "sleep_hours"         
## [16] "exercise"             "pet"                  "covid_pos"           
## [19] "covid_neg"            "big5_open"            "big5_con"            
## [22] "big5_agr"             "big5_neu"             "big5_ext"            
## [25] "pswq"                 "iou"                  "mfq_26"              
## [28] "mfq_state"            "rse"                  "school_covid_support"
## [31] "school_att"           "pas_covid"            "pss"                 
## [34] "phq"                  "gad"                  "edeq12"              
## [37] "brs"                  "swemws"               "isolation_c"         
## [40] "support"
head(df)   # first 6 lines of data in the data frame
##      X gender trans    sexual_orientation
## 1  520 female    no     Prefer not to say
## 2 2814   male    no Heterosexual/Straight
## 3 3146 female    no Heterosexual/Straight
## 4 3295   male    no Heterosexual/Straight
## 5  717 female    no               Asexual
## 6 6056 female    no     Prefer not to say
##                                                     ethnicity
## 1                                           Prefer not to say
## 2                               White - British, Irish, other
## 3 Asian/Asian British - Indian, Pakistani, Bangladeshi, other
## 4 Asian/Asian British - Indian, Pakistani, Bangladeshi, other
## 5                               White - British, Irish, other
## 6 Asian/Asian British - Indian, Pakistani, Bangladeshi, other
##     relationship_status        age urban_rural income
## 1 Single, never married 1 under 18        town   <NA>
## 2 Single, never married 1 under 18        town   <NA>
## 3     Prefer not to say 1 under 18        town   <NA>
## 4 Single, never married 1 under 18        town   <NA>
## 5 Single, never married 1 under 18     village   <NA>
## 6     Prefer not to say 1 under 18        city   <NA>
##                                    education               employment
## 1 1 equivalent to not completing high school 1 high school equivalent
## 2                          prefer not to say 1 high school equivalent
## 3     2 equivalent to high school completion 1 high school equivalent
## 4                          prefer not to say 1 high school equivalent
## 5 1 equivalent to not completing high school 1 high school equivalent
## 6 1 equivalent to not completing high school 1 high school equivalent
##                    treatment                           health    mhealth
## 1                       <NA> something else or not applicable none or NA
## 2           not in treatment something else or not applicable none or NA
## 3                       <NA>                prefer not to say none or NA
## 4 no psychological disorders                     lung disease none or NA
## 5           not in treatment something else or not applicable none or NA
## 6           not in treatment something else or not applicable none or NA
##    sleep_hours           exercise     pet covid_pos covid_neg big5_open
## 1  2 5-6 hours 1 less than 1 hour     cat         0         0  3.666667
## 2  3 7-8 hours 1 less than 1 hour   other         0         0  4.333333
## 3  2 5-6 hours 1 less than 1 hour no pets         0         0  5.666667
## 4 4 8-10 hours 1 less than 1 hour no pets         0         0  6.000000
## 5  3 7-8 hours 1 less than 1 hour no pets         0         0  5.666667
## 6 4 8-10 hours 1 less than 1 hour no pets         0         0  4.666667
##   big5_con big5_agr big5_neu big5_ext     pswq      iou mfq_26 mfq_state rse
## 1 3.000000 4.333333 5.333333 2.000000 2.714286 2.222222   2.70     3.000 2.6
## 2 4.000000 2.666667 2.666667 2.666667 1.428571 1.518519   4.55     4.375 3.1
## 3 6.000000 5.666667 1.000000 4.666667 1.857143 1.777778   4.80     4.875 3.7
## 4 4.000000 5.666667 3.666667 4.333333 1.785714 1.851852   3.80     4.875 3.0
## 5 3.333333 5.000000 4.333333 1.666667 2.357143 2.222222   4.50     4.875 3.0
## 6 4.333333 4.333333 5.000000 2.333333 2.500000 2.444444   4.00     3.750 3.0
##   school_covid_support school_att pas_covid  pss      phq      gad   edeq12 brs
## 1                   NA         NA  3.000000 2.75 1.555556 1.142857 1.333333  NA
## 2                   NA         NA  3.444444 2.25 1.444444 1.285714 1.083333  NA
## 3                   NA         NA  4.666667 3.00 1.111111 1.000000 1.000000  NA
## 4                   NA         NA  2.444444 2.00 1.333333 1.000000 1.000000  NA
## 5                   NA         NA  1.555556 1.75 1.444444 1.142857 1.166667  NA
## 6                   NA         NA  3.111111 2.00 1.000000 1.142857 1.416667  NA
##     swemws isolation_c  support
## 1 3.000000           1 2.833333
## 2 2.857143           1 3.000000
## 3 4.000000           1 4.000000
## 4 3.571429           1 4.000000
## 5 3.857143           1 3.666667
## 6 3.571429           1 3.666667
str(df)    # shows all the variables in the data frame and their classification type (e.g., numeric, string, character,etc.)
## 'data.frame':    996 obs. of  40 variables:
##  $ X                   : int  520 2814 3146 3295 717 6056 4753 5365 2044 1965 ...
##  $ gender              : chr  "female" "male" "female" "male" ...
##  $ trans               : chr  "no" "no" "no" "no" ...
##  $ sexual_orientation  : chr  "Prefer not to say" "Heterosexual/Straight" "Heterosexual/Straight" "Heterosexual/Straight" ...
##  $ ethnicity           : chr  "Prefer not to say" "White - British, Irish, other" "Asian/Asian British - Indian, Pakistani, Bangladeshi, other" "Asian/Asian British - Indian, Pakistani, Bangladeshi, other" ...
##  $ relationship_status : chr  "Single, never married" "Single, never married" "Prefer not to say" "Single, never married" ...
##  $ age                 : chr  "1 under 18" "1 under 18" "1 under 18" "1 under 18" ...
##  $ urban_rural         : chr  "town" "town" "town" "town" ...
##  $ income              : chr  NA NA NA NA ...
##  $ education           : chr  "1 equivalent to not completing high school" "prefer not to say" "2 equivalent to high school completion" "prefer not to say" ...
##  $ employment          : chr  "1 high school equivalent" "1 high school equivalent" "1 high school equivalent" "1 high school equivalent" ...
##  $ treatment           : chr  NA "not in treatment" NA "no psychological disorders" ...
##  $ health              : chr  "something else or not applicable" "something else or not applicable" "prefer not to say" "lung disease" ...
##  $ mhealth             : chr  "none or NA" "none or NA" "none or NA" "none or NA" ...
##  $ sleep_hours         : chr  "2 5-6 hours" "3 7-8 hours" "2 5-6 hours" "4 8-10 hours" ...
##  $ exercise            : chr  "1 less than 1 hour" "1 less than 1 hour" "1 less than 1 hour" "1 less than 1 hour" ...
##  $ pet                 : chr  "cat" "other" "no pets" "no pets" ...
##  $ covid_pos           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ covid_neg           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ big5_open           : num  3.67 4.33 5.67 6 5.67 ...
##  $ big5_con            : num  3 4 6 4 3.33 ...
##  $ big5_agr            : num  4.33 2.67 5.67 5.67 5 ...
##  $ big5_neu            : num  5.33 2.67 1 3.67 4.33 ...
##  $ big5_ext            : num  2 2.67 4.67 4.33 1.67 ...
##  $ pswq                : num  2.71 1.43 1.86 1.79 2.36 ...
##  $ iou                 : num  2.22 1.52 1.78 1.85 2.22 ...
##  $ mfq_26              : num  2.7 4.55 4.8 3.8 4.5 4 5.8 4.2 4.5 5.25 ...
##  $ mfq_state           : num  3 4.38 4.88 4.88 4.88 ...
##  $ rse                 : num  2.6 3.1 3.7 3 3 3 4 3.8 2.5 4 ...
##  $ school_covid_support: num  NA NA NA NA NA NA NA NA NA NA ...
##  $ school_att          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ pas_covid           : num  3 3.44 4.67 2.44 1.56 ...
##  $ pss                 : num  2.75 2.25 3 2 1.75 2 1 1.25 3 1.25 ...
##  $ phq                 : num  1.56 1.44 1.11 1.33 1.44 ...
##  $ gad                 : num  1.14 1.29 1 1 1.14 ...
##  $ edeq12              : num  1.33 1.08 1 1 1.17 ...
##  $ brs                 : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ swemws              : num  3 2.86 4 3.57 3.86 ...
##  $ isolation_c         : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ support             : num  2.83 3 4 4 3.67 ...

Subsetting Data

Open your mini codebook and get the names of your variables (first column). Then enter this list of names within the “select=c()” argument to subset those columns from the dataframe “df” into a new one “d”.

Replace “variable1, variable2,…” with your variables names.

# Make sure to keep the "ResponseID" variable first in the "select" argument.
# NOTE: you will need to replace "ResponseID" with "X" if you are using the ARC data.

d <- subset(df, select=c(X, urban_rural, mhealth, mfq_state, phq, treatment, support))

# Your new data frame should contain 7 variables (ResponseID, + your 2 categorical, + your 4 continuous)


names(d)  # all the variable name in the data frame
## [1] "X"           "urban_rural" "mhealth"     "mfq_state"   "phq"        
## [6] "treatment"   "support"
head(d)   # first 6 lines of data in the data frame
##      X urban_rural    mhealth mfq_state      phq                  treatment
## 1  520        town none or NA     3.000 1.555556                       <NA>
## 2 2814        town none or NA     4.375 1.444444           not in treatment
## 3 3146        town none or NA     4.875 1.111111                       <NA>
## 4 3295        town none or NA     4.875 1.333333 no psychological disorders
## 5  717     village none or NA     4.875 1.444444           not in treatment
## 6 6056        city none or NA     3.750 1.000000           not in treatment
##    support
## 1 2.833333
## 2 3.000000
## 3 4.000000
## 4 4.000000
## 5 3.666667
## 6 3.666667
str(d)
## 'data.frame':    996 obs. of  7 variables:
##  $ X          : int  520 2814 3146 3295 717 6056 4753 5365 2044 1965 ...
##  $ urban_rural: chr  "town" "town" "town" "town" ...
##  $ mhealth    : chr  "none or NA" "none or NA" "none or NA" "none or NA" ...
##  $ mfq_state  : num  3 4.38 4.88 4.88 4.88 ...
##  $ phq        : num  1.56 1.44 1.11 1.33 1.44 ...
##  $ treatment  : chr  NA "not in treatment" NA "no psychological disorders" ...
##  $ support    : num  2.83 3 4 4 3.67 ...

Missing Data

# use the gg_miss_upset(d) command for a visualization of your missing data

gg_miss_upset(d[-1], nsets = 6) 
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## ℹ Please use tidy evaluation idioms with `aes()`.
## ℹ See also `vignette("ggplot2-in-packages")` for more information.
## ℹ The deprecated feature was likely used in the UpSetR package.
##   Please report the issue to the authors.
## This warning is displayed once per session.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## ℹ The deprecated feature was likely used in the UpSetR package.
##   Please report the issue to the authors.
## This warning is displayed once per session.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## ℹ The deprecated feature was likely used in the UpSetR package.
##   Please report the issue to the authors.
## This warning is displayed once per session.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

# the [-1] tells the function to ignore the first column i.e., variable -- we are doing this because here it is just the ID variable, we don't need to check it for missingness because everyone was assigned a random ID

# use the na.omit() command to create a new dataframe in which any participants with missing data are dropped from the dataframe
d2 <- na.omit(d)

# Next, calc the total number of participants dropped, then convert to % and insert both the number and % in the text below.
# insert the total number of participants in your d2 in the text where it says N = #.
996-608
## [1] 388
388/996
## [1] 0.3895582
# Then fill in the paragraph below with your numbers

We looked at the missing data in our dataset, and found that 388, or about 39%, of the participants in our sample skipped at least one item. We dropped these participants from our analysis, which is not advisable and runs the risk of dropping vulnerable groups or skewing results. However, we will proceed for the sake of this class using the reduced dataset, N = 608.

Exporting Cleaned Data

Our last step is to export the data frame after we’ve dropped NAs so that it can be used in future HWs.

# use the "write.cvs" function to export the cleaned data
# please keep the file name as 'projectdata'
# note: you only need to change 'Data' before the slash if you named your folder something else

write.csv(d2, file="Data/projectdata.csv", row.names = F)