A random variable \(W\) is said to follow an \(F\) distribution with \(p\) numerator and \(q\) denominator degrees-of-freedom, and we say \(W\sim F_{p,q}\), if it has pdf given by:
\[f_W(w) = \frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma{\left(\frac{p}{2}\right)}\Gamma{\left(\frac{q}{2}\right)}}\left(\frac{p}{q}\right)^{p/2}w^{p/2-1}\left(1 + \frac{p}{q}w\right)^{-\left(\frac{p+q}{2}\right)}; w > 0\]
\[\scriptsize f_{U,V}(u,v) = \frac{1}{2^{p/2}\Gamma(p/2)} u^{p/2-1} e^{-u/2} \cdot \frac{1}{2^{q/2}\Gamma(q/2)} v^{q/2-1} e^{-v/2}, \qquad u>0,\; v>0.\]
\[\scriptsize \begin{align}W &= \frac{U/p}{V/q}\\ X &= V \end{align}\] Note that \(W >0, X>0\) is joint support
\[ \scriptsize \begin{align} U &=\frac{p}{q} W X\\ V &= X\end{align}\]
\[\scriptsize J = \begin{bmatrix} \dfrac{p}{q} x & \dfrac{p}{q} w \\[6pt] 0 & 1 \end{bmatrix}\Rightarrow \left| det(J) \right| = \frac{p}{q} x.\]
\[f_{W,X}(w,x) = f_{U,V}\!\left( \frac{p}{q}wx,\; x \right) \left| J \right|\]
\[= \frac{1}{2^{p/2}\Gamma(p/2)} \left( \frac{p}{q}wx \right)^{p/2-1} e^{-\frac{pwx}{2q}} \cdot \frac{1}{2^{q/2}\Gamma(q/2)} x^{q/2-1} e^{-x/2} \cdot \frac{p}{q} x\]
\[=\frac{1}{2^{(p+q)/2}\Gamma(p/2)\Gamma(q/2)} \left( \frac{p}{q} \right)^{p/2} w^{p/2-1} x^{(p+q)/2-1} \exp\!\left[-\frac{x}{2}\!\left(1+\frac{p}{q}w\right)\right], w>0,\; x>0.\]
\[f_W(w) = \int_0^\infty \frac{1}{2^{(p+q)/2}\Gamma(p/2)\Gamma(q/2)} \left( \frac{p}{q} \right)^{p/2} w^{p/2-1} x^{(p+q)/2-1} \exp\!\left[-\frac{x}{2}\!\left(1+\frac{p}{q}w\right)\right]\, dx\]
\[\stackrel{show!}{=}\frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma{\left(\frac{p}{2}\right)}\Gamma{\left(\frac{q}{2}\right)}}\left(\frac{p}{q}\right)^{p/2}w^{p/2-1}\left(1 + \frac{p}{q}w\right)^{-\left(\frac{p+q}{2}\right)}; w > 0\]
Rdf(x, df1, df2): evaluate \(f_W(x)\)pf(x, df1, df2): evaluate cumulative probabilitiesqf(p, df1, df2): find quantiles\[H_0: \sigma^2_X = \sigma^2_Y\] \[H_a: \sigma^2_X \ne \sigma^2_Y\]
\[H_0: \mu_1 = \mu_2 = ... = \mu_k\] \[H_a: \mbox{at least one mean differs from the others}\]
\[ \small F = \frac{\sum_{i=1}^k r_i (\bar Y_{i\cdot}-\bar{Y}_{\cdot\cdot})^2/(k-1)}{\sum_{i=1}^k\sum_{j=1}^{r_i}(Y_{ij}-\bar{Y_{i\cdot}})^2/(N-k)} = \frac{SSTreatment/(k-1)}{SSError/(N-k)} =\frac{(SSTotal - SSError)/(k-1)}{SSError/(N-k)} \]
Under \(H_0\), all \(Y_{ij}\) come from one common parent population: \(N(\mu,\sigma^2)\). Thus:
\[\frac{SSTotal}{\sigma^2} = \frac{\sum_{i=1}^k\sum_{j=1}^{r_i}(Y_{ij}-\bar{Y_{\cdot\cdot}})^2}{\sigma^2} = \frac{(N-1)S_p^2}{\sigma^2} \sim \chi^2_{N-1}\]
\[\frac{SSError}{\sigma^2} = \frac{\sum_{i=1}^k\sum_{j=1}^{r_i}(Y_{ij}-\bar{Y_{i\cdot}})^2}{\sigma^2} = \underbrace{\frac{\sum_{i=1}^k(r_i -1)S^2_i}{\sigma^2}}_{\mbox{function of }S_i^2}= \sum_{i=1}^k\underbrace{\frac{(r_i -1)S^2_i}{\sigma^2}}_{\sim \chi^2_{r_i-1}} \sim \chi^2_{N-k}\]
\[\frac{SSTreatment}{\sigma^2} =\underbrace{\frac{\sum_{i=1}^kr_i(\bar{Y_{i\cdot}}-\bar Y_{\cdot \cdot})^2}{\sigma^2}}_{\mbox{function of }\bar Y_i} \Rightarrow SSTreatment \perp \!\!\!\perp SSError\]
\[\underbrace{\frac{SSTotal}{\sigma^2}}_{\sim \chi^2_{N-1}}=\underbrace{\frac{SSTreatment}{\sigma^2}+\underbrace{\frac{SSError}{\sigma^2}}_{\sim \chi^2_{N-k}}}_{independent} \Rightarrow \frac{SSTreatment}{\sigma^2}\sim \chi^2_{N-1-(N-k)}\equiv \chi^2_{k-1} \mbox{(see 7.4)}\]
\[\Rightarrow F = \frac{SSTreatment/(k-1)}{SSError/(N-k)} ``\equiv"\frac{\chi^2_{k-1}/(k-1)}{\chi^2_{N-k}/(N-k)}\sim F_{k-1,N-k}\]
Note required assumptions for this to be the right sampling distribution for determining “large”! Normality of data and common population variance.