R Data Structure - Vectors
# creating vectors of data for three medical patients
subject_name <- c("John Doe", "Jane Doe", "Steve Graves")
temperature <- c(98.1, 98.6, 101.4)
flu_status <- c(FALSE, FALSE, TRUE)
# accessing the second element in body temperature vector
temperature[2]
[1] 98.6
Accesing items in vector
# including items in the range 2 to 3
temperature[2:3]
[1] 98.6 101.4
# excluding item 2 using the minus sign
temperature[-2]
[1] 98.1 101.4
# using a vector to indicate whether to include item
temperature[c(TRUE, TRUE, FALSE)]
[1] 98.1 98.6
Factors
# add gender factor
gender <- factor(c("MALE", "FEMALE", "MALE"))
gender
[1] MALE FEMALE MALE
Levels: FEMALE MALE
# adding blood type factor
blood <- factor(c("O", "AB", "A"),
levels = c("A", "B", "AB", "O"))
blood
[1] O AB A
Levels: A B AB O
# adding ordered factor
symptoms <- factor(c("SEVERE", "MILD", "MODERATE"),
levels = c("MILD", "MODERATE", "SEVERE"),
ordered = TRUE)
symptoms
[1] SEVERE MILD MODERATE
Levels: MILD < MODERATE < SEVERE
# checking for symptoms greater than moderate
symptoms > "MODERATE"
[1] TRUE FALSE FALSE
Lists
# displaying information for a patient
subject_name[1]
[1] "John Doe"
temperature[1]
[1] 98.1
flu_status[1]
[1] FALSE
gender[1]
[1] MALE
Levels: FEMALE MALE
blood[1]
[1] O
Levels: A B AB O
symptoms[1]
[1] SEVERE
Levels: MILD < MODERATE < SEVERE
# create list for a patient
subject1 <- list(fullname = subject_name[1],
temperature = temperature[1],
flu_status = flu_status[1],
gender = gender[1],
blood = blood[1],
symptoms = symptoms[1])
# displaying the patient
subject1
$fullname
[1] "John Doe"
$temperature
[1] 98.1
$flu_status
[1] FALSE
$gender
[1] MALE
Levels: FEMALE MALE
$blood
[1] O
Levels: A B AB O
$symptoms
[1] SEVERE
Levels: MILD < MODERATE < SEVERE
Methods for accesing a list
# fisrt get a single list value by position (returns a sub-list)
subject1[2]
$temperature
[1] 98.1
# then get a single list value by position (returns a numeric vector)
subject1[[2]]
[1] 98.1
# get a single list value by name
subject1$temperature
[1] 98.1
# get several list items by specifying a vector of names
subject1[c("temperature", "flu_status")]
$temperature
[1] 98.1
$flu_status
[1] FALSE
Accesing a list like a vector
# get values 2 and 3
subject1[2:3]
$temperature
[1] 98.1
$flu_status
[1] FALSE
Data Frame - Creating a data frame from medical patient data
pt_data <- data.frame(subject_name, temperature, flu_status, gender,
blood, symptoms, stringsAsFactors = FALSE)
# displaying the data frame
pt_data
Accesing a data frame
# get a single column
pt_data$subject_name
[1] "John Doe" "Jane Doe" "Steve Graves"
# get several columns by specifying a vector of names
pt_data[c("temperature", "flu_status")]
# this is the same as above, extracting temperature and flu_status
pt_data[2:3]
# accessing by row and column
pt_data[1, 2]
[1] 98.1
# accessing several rows and several columns using vectors
pt_data[c(1, 3), c(2, 4)]
Leaving a row or column blank to extract all rows or columns
# column 1, all rows
pt_data[, 1]
[1] "John Doe" "Jane Doe" "Steve Graves"
# row 1, all columns
pt_data[1, ]
# all rows and all columns
pt_data[ , ]
# the following are equivalent
pt_data[c(1, 3), c("temperature", "gender")]
pt_data[-2, c(-1, -3, -5, -6)]
# creating a Celsius temperature column
pt_data$temp_c <- (pt_data$temperature - 32) * (5 / 9)
# comparing before and after
pt_data[c("temperature", "temp_c")]
Matrixes
# creating a 2x2 matrix
m <- matrix(c(1, 2, 3, 4), nrow = 2)
m
[,1] [,2]
[1,] 1 3
[2,] 2 4
# equivalent to the above
m <- matrix(c(1, 2, 3, 4), ncol = 2)
m
[,1] [,2]
[1,] 1 3
[2,] 2 4
# creating a 2x3 matrix
m <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2)
m
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
# creating a 3x2 matrix
m <- matrix(c(1, 2, 3, 4, 5, 6), ncol = 2)
m
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
# extracting values from matrixes
m[1, 1]
[1] 1
m[3, 2]
[1] 6
# extracting rows
m[1, ]
[1] 1 4
# extracting columns
m[, 1]
[1] 1 2 3