2-3
## [1] -1
2/3
## [1] 0.6666667
2^3
## [1] 8
sqrt(2)
## [1] 1.414214
log(2)
## [1] 0.6931472
Question 1
log_base_5 <- log(10, base = 5)
print(log_base_5)
## [1] 1.430677
log_natural <- log(10)
print(log_natural)
## [1] 2.302585
log_base_10 <- log10(10)
print(log_base_10)
## [1] 1
BA=(29)/(112)
BA
## [1] 0.2589286
Batting_Average=round(BA,digits = 3)
Batting_Average
## [1] 0.259
Question 2
BA=(42)/(212)
BA
## [1] 0.1981132
OBP=(172+84+5)/(515+172+84+5+6)
OBP
## [1] 0.3337596
On_Base_Percentage=round(OBP,digits = 3)
On_Base_Percentage
## [1] 0.334
Question 3
OBP=(156+65+3)/(565+156+65+3+7)
OBP
## [1] 0.281407
3 == 8#
## [1] FALSE
3 != 8#
## [1] TRUE
3 <= 8#
## [1] TRUE
3>4
## [1] FALSE
FALSE | FALSE
## [1] FALSE
TRUE & FALSE
## [1] FALSE
! FALSE # Not False
## [1] TRUE
2 < 3 | 1 == 5
## [1] TRUE
ASSIGNING VALUES TO VARIABLES
Total_Bases <- 6 + 5
Total_Bases*3
## [1] 33
ls()
## [1] "BA" "Batting_Average" "log_base_10"
## [4] "log_base_5" "log_natural" "OBP"
## [7] "On_Base_Percentage" "Total_Bases"
rm(Total_Bases)
pitches_by_innings <- c(12, 15, 10, 20, 10)
pitches_by_innings
## [1] 12 15 10 20 10
strikes_by_innings <- c(9, 12, 6, 14, 9)
strikes_by_innings
## [1] 9 12 6 14 9
Question 4
runs_per_9innings <- c(3, 4, 2, 5, 3)
runs_per_9innings
## [1] 3 4 2 5 3
hits_per_9innings <- c(7, 9, 6, 10, 8)
hits_per_9innings
## [1] 7 9 6 10 8
rep(2,5)
## [1] 2 2 2 2 2
rep(1,4)
## [1] 1 1 1 1
1:5
## [1] 1 2 3 4 5
2:10
## [1] 2 3 4 5 6 7 8 9 10
seq(1, 10, by=2)
## [1] 1 3 5 7 9
seq(2,13,by=3)
## [1] 2 5 8 11
pitches_by_innings+strikes_by_innings
## [1] 21 27 16 34 19
pitches_by_innings == strikes_by_innings
## [1] FALSE FALSE FALSE FALSE FALSE
length(pitches_by_innings)
## [1] 5
min(pitches_by_innings)
## [1] 10
mean(pitches_by_innings)
## [1] 13.4
pitches_by_innings
## [1] 12 15 10 20 10
pitches_by_innings[1]
## [1] 12
Question 5
first_element <- hits_per_9innings[1]
print(first_element)
## [1] 7
pitches_by_innings[length(pitches_by_innings)]
## [1] 10
Question 6
hits_per_9innings[length(hits_per_9innings)]
## [1] 8
pitches_by_innings[c(2, 3, 4)]
## [1] 15 10 20
player_positions <- c("catcher", "pitcher", "infielders", "outfielders")
Data frames
data.frame(bonus = c(2, 3, 1),#in millions
active_roster = c("yes", "no", "yes"),
salary = c(1.5, 2.5, 1))#in millions
## bonus active_roster salary
## 1 2 yes 1.5
## 2 3 no 2.5
## 3 1 yes 1.0
How to make a random sample
sample(1:10, size=5)
## [1] 5 8 9 10 4
bar <- data.frame(var1 = LETTERS[1:10], var2 = 1:10)
# Check data frame
bar
## var1 var2
## 1 A 1
## 2 B 2
## 3 C 3
## 4 D 4
## 5 E 5
## 6 F 6
## 7 G 7
## 8 H 8
## 9 I 9
## 10 J 10
n <- 5
samplerows <- sample(1:nrow(bar), size=n)
samplerows
## [1] 10 9 3 2 8
barsample <- bar[samplerows, ]
print(barsample)
## var1 var2
## 10 J 10
## 9 I 9
## 3 C 3
## 2 B 2
## 8 H 8
bar[sample(1:nrow(bar), n), ]
## var1 var2
## 8 H 8
## 5 E 5
## 1 A 1
## 2 B 2
## 3 C 3
Using tables
x <- c("Yes","No","No","Yes","Yes")
table(x)
## x
## No Yes
## 2 3
Numerical measurements of center and spread
sals <- c(12, .4, 5, 2, 50, 8, 3, 1, 4, 0.25)
mean(sals)
## [1] 8.565
var(sals)
## [1] 225.5145
sd(sals)
## [1] 15.01714
median(sals)
## [1] 3.5
fivenum(sals)
## [1] 0.25 1.00 3.50 8.00 50.00
summary(sals)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.250 1.250 3.500 8.565 7.250 50.000
How about the mode
getMode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
getMode(pitches_by_innings)
## [1] 10
Question 7
most_frequent <- names(which.max(table(hits_per_9innings)))
print(most_frequent)
## [1] "6"
Question 8
game_day <- c("Saturday", "Saturday", "Sunday", "Monday", "Saturday", "Tuesday", "Sunday", "Friday", "Friday", "Monday")
survey_summary <- table(game_day)
print(survey_summary)
## game_day
## Friday Monday Saturday Sunday Tuesday
## 2 2 3 2 1
Question 9
getMode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
game_day <- c("Saturday", "Saturday", "Sunday", "Monday", "Saturday", "Tuesday", "Sunday", "Friday", "Friday", "Monday")
most_frequent_day <- getMode(game_day)
print(most_frequent_day)
## [1] "Saturday"