This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.
Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.
getwd()
[1] "/cloud/project"
usedcars <- read.csv("usedcars.csv", stringsAsFactors = FALSE)
str(usedcars)
'data.frame': 150 obs. of 6 variables:
$ year : int 2011 2011 2011 2011 2012 2010 2011 2010 2011 2010 ...
$ model : chr "SEL" "SEL" "SEL" "SEL" ...
$ price : int 21992 20995 19995 17809 17500 17495 17000 16995 16995 16995 ...
$ mileage : int 7413 10926 7351 11613 8367 25125 27393 21026 32655 36116 ...
$ color : chr "Yellow" "Gray" "Silver" "Gray" ...
$ transmission: chr "AUTO" "AUTO" "AUTO" "AUTO" ...
summary(usedcars$year)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2000 2008 2009 2009 2010 2012
summary(usedcars[c("price", "mileage")])
price mileage
Min. : 3800 Min. : 4867
1st Qu.:10995 1st Qu.: 27200
Median :13592 Median : 36385
Mean :12962 Mean : 44261
3rd Qu.:14904 3rd Qu.: 55124
Max. :21992 Max. :151479
(36000 + 44000 + 56000) / 3
[1] 45333.33
mean(c(36000, 44000, 56000))
[1] 45333.33
median(c(36000, 44000, 56000))
[1] 44000
range(usedcars$price)
[1] 3800 21992
diff(range(usedcars$price))
[1] 18192
IQR(usedcars$price)
[1] 3909.5
quantile(usedcars$price)
0% 25% 50% 75% 100%
3800.0 10995.0 13591.5 14904.5 21992.0
quantile(usedcars$price, probs = c(0.01, 0.99))
1% 99%
5428.69 20505.00
quantile(usedcars$price, seq(from = 0, to = 1, by = 0.20))
0% 20% 40% 60% 80% 100%
3800.0 10759.4 12993.8 13992.0 14999.0 21992.0
boxplot(usedcars$price, main="Boxplot of Used Car Prices",
ylab="Price ($)")
boxplot(usedcars$mileage, main="Boxplot of Used Car Mileage",
ylab="Odometer (mi.)")
hist(usedcars$price, main = "Histogram of Used Car Prices",
xlab = "Price ($)")
hist(usedcars$mileage, main = "Histogram of Used Car Mileage",
xlab = "Odometer (mi.)")
var(usedcars$price)
[1] 9749892
sd(usedcars$price)
[1] 3122.482
var(usedcars$mileage)
[1] 728033954
sd(usedcars$mileage)
[1] 26982.1
table(usedcars$year)
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
3 1 1 1 3 2 6 11 14 42
2010 2011 2012
49 16 1
table(usedcars$model)
SE SEL SES
78 23 49
table(usedcars$color)
Black Blue Gold Gray Green Red Silver
35 17 1 16 5 25 32
White Yellow
16 3
model_table <- table(usedcars$model)
prop.table(model_table)
SE SEL SES
0.5200000 0.1533333 0.3266667
color_table <- table(usedcars$color)
color_pct <- prop.table(color_table) * 100
round(color_pct, digits = 1)
Black Blue Gold Gray Green Red Silver
23.3 11.3 0.7 10.7 3.3 16.7 21.3
White Yellow
10.7 2.0
plot(x = usedcars$mileage, y = usedcars$price,
main = "Scatterplot of Price vs. Mileage",
xlab = "Used Car Odometer (mi.)",
ylab = "Used Car Price ($)")
usedcars$conservative <-
usedcars$color %in% c("Black", "Gray", "Silver", "White")
table(usedcars$conservative)
FALSE TRUE
51 99
install.packages("gmodels")
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/gtools_3.9.5.tar.gz'
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/gdata_3.0.1.tar.gz'
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/gmodels_2.19.1.tar.gz'
The downloaded source packages are in
‘/tmp/RtmpA9PCVb/downloaded_packages’
library(gmodels)
CrossTable(x = usedcars$model, y = usedcars$conservative)
Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|
Total Observations in Table: 150
| usedcars$conservative
usedcars$model | FALSE | TRUE | Row Total |
---------------|-----------|-----------|-----------|
SE | 27 | 51 | 78 |
| 0.009 | 0.004 | |
| 0.346 | 0.654 | 0.520 |
| 0.529 | 0.515 | |
| 0.180 | 0.340 | |
---------------|-----------|-----------|-----------|
SEL | 7 | 16 | 23 |
| 0.086 | 0.044 | |
| 0.304 | 0.696 | 0.153 |
| 0.137 | 0.162 | |
| 0.047 | 0.107 | |
---------------|-----------|-----------|-----------|
SES | 17 | 32 | 49 |
| 0.007 | 0.004 | |
| 0.347 | 0.653 | 0.327 |
| 0.333 | 0.323 | |
| 0.113 | 0.213 | |
---------------|-----------|-----------|-----------|
Column Total | 51 | 99 | 150 |
| 0.340 | 0.660 | |
---------------|-----------|-----------|-----------|