Load Dataset
usedcars <- read.csv("usedcars.csv", stringsAsFactors = FALSE)
head(car)
# get structure of used car data
str(usedcars)
'data.frame': 150 obs. of 6 variables:
$ year : int 2011 2011 2011 2011 2012 2010 2011 2010 2011 2010 ...
$ model : chr "SEL" "SEL" "SEL" "SEL" ...
$ price : int 21992 20995 19995 17809 17500 17495 17000 16995 16995 16995 ...
$ mileage : int 7413 10926 7351 11613 8367 25125 27393 21026 32655 36116 ...
$ color : chr "Yellow" "Gray" "Silver" "Gray" ...
$ transmission: chr "AUTO" "AUTO" "AUTO" "AUTO" ...
Exploring numeric variables —–
# summarize numeric variables
summary(usedcars$year)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2000 2008 2009 2009 2010 2012
summary(usedcars[c("price", "mileage")])
price mileage
Min. : 3800 Min. : 4867
1st Qu.:10995 1st Qu.: 27200
Median :13592 Median : 36385
Mean :12962 Mean : 44261
3rd Qu.:14904 3rd Qu.: 55124
Max. :21992 Max. :151479
# Calculate the mean income
(36000 + 44000 + 56000) / 3
[1] 45333.33
mean(c(36000, 44000, 56000))
[1] 45333.33
# the median income
median(c(36000, 44000, 56000))
[1] 44000
# the min/max of used car prices
range(usedcars$price)
[1] 3800 21992
# the difference of the range
diff(range(usedcars$price))
[1] 18192
# IQR for used car prices
IQR(usedcars$price)
[1] 3909.5
quantile(usedcars$price, probs = c(0.01, 0.99))
1% 99%
5428.69 20505.00
# quantiles
quantile(usedcars$price, seq(from = 0, to = 1, by = 0.20))
0% 20% 40% 60% 80% 100%
3800.0 10759.4 12993.8 13992.0 14999.0 21992.0
# boxplot of used car prices and mileage
boxplot(usedcars$price, main="Boxplot of Used Car Prices",
ylab="Price ($)", col="red")

boxplot(usedcars$mileage, main="Boxplot of Used Car Mileage",
ylab="Odometer (mi.)", col='green')

# histograms of used car prices and mileage
hist(usedcars$price, main = "Histogram of Used Car Prices",
xlab = "Price ($)", col='yellow')

hist(usedcars$mileage, main = "Histogram of Used Car Mileage",
xlab = "Odometer (mi.)", col='gold')

# variance and standard deviation of the used car data
var(usedcars$price)
[1] 9749892
sd(usedcars$price)
[1] 3122.482
var(usedcars$mileage)
[1] 728033954
sd(usedcars$mileage)
[1] 26982.1
Exploring numeric variables —–
# one-way tables for the used car data
table(usedcars$year)
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
3 1 1 1 3 2 6 11 14 42 49 16 1
table(usedcars$model)
SE SEL SES
78 23 49
table(usedcars$color)
Black Blue Gold Gray Green Red Silver White Yellow
35 17 1 16 5 25 32 16 3
# compute table proportion
model_table <- table(usedcars$model)
prop.table(model_table)
SE SEL SES
0.5200000 0.1533333 0.3266667
# round the data
color_table <- table(usedcars$color)
color_pct <- prop.table(color_table) * 100
round(color_pct, digits = 1)
Black Blue Gold Gray Green Red Silver White Yellow
23.3 11.3 0.7 10.7 3.3 16.7 21.3 10.7 2.0
Exploring relationships between variables —–
# scatterplot of price vs. mileage
plot(x = usedcars$mileage, y = usedcars$price,
main = "Scatterplot of Price vs. Mileage",
xlab = "Used Car Odometer (mi.)",
ylab = "Used Car Price ($)", col='blue')

# new variable indicating conservative colors
usedcars$conservative <-
usedcars$color %in% c("Black", "Gray", "Silver", "White")
# checking our variable
table(usedcars$conservative)
FALSE TRUE
51 99
install.packages("gmodels")
# Crosstab of conservative by model
library(gmodels)
CrossTable(x = usedcars$model, y = usedcars$conservative)
Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|
Total Observations in Table: 150
| usedcars$conservative
usedcars$model | FALSE | TRUE | Row Total |
---------------|-----------|-----------|-----------|
SE | 27 | 51 | 78 |
| 0.009 | 0.004 | |
| 0.346 | 0.654 | 0.520 |
| 0.529 | 0.515 | |
| 0.180 | 0.340 | |
---------------|-----------|-----------|-----------|
SEL | 7 | 16 | 23 |
| 0.086 | 0.044 | |
| 0.304 | 0.696 | 0.153 |
| 0.137 | 0.162 | |
| 0.047 | 0.107 | |
---------------|-----------|-----------|-----------|
SES | 17 | 32 | 49 |
| 0.007 | 0.004 | |
| 0.347 | 0.653 | 0.327 |
| 0.333 | 0.323 | |
| 0.113 | 0.213 | |
---------------|-----------|-----------|-----------|
Column Total | 51 | 99 | 150 |
| 0.340 | 0.660 | |
---------------|-----------|-----------|-----------|
LS0tCnRpdGxlOiAiVXNlZCBDYXIgTm90ZWJvb2siCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCiMjIyBMb2FkIERhdGFzZXQKYGBge3J9CnVzZWRjYXJzIDwtIHJlYWQuY3N2KCJ1c2VkY2Fycy5jc3YiLCBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UpCmhlYWQodXNlZGNhcnMpCmBgYApgYGB7cn0KIyBzdHJ1Y3R1cmUgb2YgdXNlZCBjYXIgZGF0YQpzdHIodXNlZGNhcnMpCmBgYAoKIyMjICoqRXhwbG9yaW5nIG51bWVyaWMgdmFyaWFibGVzIOKAlOKAkyoqCgpgYGB7cn0KIyBzdW1tYXJpemUgbnVtZXJpYyB2YXJpYWJsZXMKc3VtbWFyeSh1c2VkY2FycyR5ZWFyKQpgYGAKCgoKYGBge3J9CnN1bW1hcnkodXNlZGNhcnNbYygicHJpY2UiLCAibWlsZWFnZSIpXSkKCmBgYAoKYGBge3J9CiMgQ2FsY3VsYXRlIHRoZSBtZWFuIGluY29tZQooMzYwMDAgKyA0NDAwMCArIDU2MDAwKSAvIDMKCmBgYAoKYGBge3J9Cm1lYW4oYygzNjAwMCwgNDQwMDAsIDU2MDAwKSkKCmBgYAoKYGBge3J9CiMgdGhlIG1lZGlhbiBpbmNvbWUKbWVkaWFuKGMoMzYwMDAsIDQ0MDAwLCA1NjAwMCkpCmBgYAoKCmBgYHtyfQojIG1pbi9tYXggb2YgdXNlZCBjYXIgcHJpY2VzCnJhbmdlKHVzZWRjYXJzJHByaWNlKQpgYGAKCgpgYGB7cn0KIyBkaWZmZXJlbmNlIG9mIHRoZSByYW5nZQpkaWZmKHJhbmdlKHVzZWRjYXJzJHByaWNlKSkKYGBgCgpgYGB7cn0KIyBJUVIgZm9yIHVzZWQgY2FyIHByaWNlcwpJUVIodXNlZGNhcnMkcHJpY2UpCmBgYAoKYGBge3J9CiMgOTl0aCBwZXJjZW50aWxlCnF1YW50aWxlKHVzZWRjYXJzJHByaWNlLCBwcm9icyA9IGMoMC4wMSwgMC45OSkpCmBgYAoKYGBge3J9CiMgcXVhbnRpbGVzCnF1YW50aWxlKHVzZWRjYXJzJHByaWNlLCBzZXEoZnJvbSA9IDAsIHRvID0gMSwgYnkgPSAwLjIwKSkKYGBgCgoKCmBgYHtyfQojIGJveHBsb3Qgb2YgdXNlZCBjYXIgcHJpY2VzIGFuZCBtaWxlYWdlCmJveHBsb3QodXNlZGNhcnMkcHJpY2UsIG1haW49IkJveHBsb3Qgb2YgVXNlZCBDYXIgUHJpY2VzIiwKICAgICAgeWxhYj0iUHJpY2UgKCQpIiwgY29sPSJyZWQiKQpgYGAKCgoKYGBge3J9CmJveHBsb3QodXNlZGNhcnMkbWlsZWFnZSwgbWFpbj0iQm94cGxvdCBvZiBVc2VkIENhciBNaWxlYWdlIiwKICAgICAgeWxhYj0iT2RvbWV0ZXIgKG1pLikiLCBjb2w9J2dyZWVuJykKYGBgCgoKCmBgYHtyfQojIGhpc3RvZ3JhbXMgb2YgdXNlZCBjYXIgcHJpY2VzIGFuZCBtaWxlYWdlCmhpc3QodXNlZGNhcnMkcHJpY2UsIG1haW4gPSAiSGlzdG9ncmFtIG9mIFVzZWQgQ2FyIFByaWNlcyIsCiAgICAgeGxhYiA9ICJQcmljZSAoJCkiLCBjb2w9J3llbGxvdycpCmBgYAoKYGBge3J9Cmhpc3QodXNlZGNhcnMkbWlsZWFnZSwgbWFpbiA9ICJIaXN0b2dyYW0gb2YgVXNlZCBDYXIgTWlsZWFnZSIsCiAgICAgeGxhYiA9ICJPZG9tZXRlciAobWkuKSIsIGNvbD0nZ29sZCcpCmBgYAoKYGBge3J9CiMgdmFyaWFuY2UgYW5kIHN0YW5kYXJkIGRldmlhdGlvbiBvZiB0aGUgdXNlZCBjYXIgZGF0YQp2YXIodXNlZGNhcnMkcHJpY2UpCmBgYAoKCmBgYHtyfQpzZCh1c2VkY2FycyRwcmljZSkKCmBgYAoKYGBge3J9CnZhcih1c2VkY2FycyRtaWxlYWdlKQoKYGBgCgpgYGB7cn0Kc2QodXNlZGNhcnMkbWlsZWFnZSkKCmBgYAoKYGBge3J9CgpgYGAKCgojIyMgKipFeHBsb3JpbmcgbnVtZXJpYyB2YXJpYWJsZXMg4oCU4oCTKioKCmBgYHtyfQojIG9uZS13YXkgdGFibGVzIGZvciB0aGUgdXNlZCBjYXIgZGF0YQp0YWJsZSh1c2VkY2FycyR5ZWFyKQpgYGAKCgpgYGB7cn0KdGFibGUodXNlZGNhcnMkbW9kZWwpCgpgYGAKCmBgYHtyfQp0YWJsZSh1c2VkY2FycyRjb2xvcikKCmBgYAoKYGBge3J9CiMgY29tcHV0ZSB0YWJsZSBwcm9wb3J0aW9uCm1vZGVsX3RhYmxlIDwtIHRhYmxlKHVzZWRjYXJzJG1vZGVsKQpwcm9wLnRhYmxlKG1vZGVsX3RhYmxlKQpgYGAKCmBgYHtyfQojIHJvdW5kIHRoZSBkYXRhCmNvbG9yX3RhYmxlIDwtIHRhYmxlKHVzZWRjYXJzJGNvbG9yKQpjb2xvcl9wY3QgPC0gcHJvcC50YWJsZShjb2xvcl90YWJsZSkgKiAxMDAKcm91bmQoY29sb3JfcGN0LCBkaWdpdHMgPSAxKQpgYGAKCgoKIyMjICoqRXhwbG9yaW5nIHJlbGF0aW9uc2hpcHMgYmV0d2VlbiB2YXJpYWJsZXMg4oCU4oCTKioKCmBgYHtyfQojIHNjYXR0ZXJwbG90IG9mIHByaWNlIHZzLiBtaWxlYWdlCnBsb3QoeCA9IHVzZWRjYXJzJG1pbGVhZ2UsIHkgPSB1c2VkY2FycyRwcmljZSwKICAgICBtYWluID0gIlNjYXR0ZXJwbG90IG9mIFByaWNlIHZzLiBNaWxlYWdlIiwKICAgICB4bGFiID0gIlVzZWQgQ2FyIE9kb21ldGVyIChtaS4pIiwKICAgICB5bGFiID0gIlVzZWQgQ2FyIFByaWNlICgkKSIsIGNvbD0nYmx1ZScpCmBgYAoKYGBge3J9CiMgbmV3IHZhcmlhYmxlIGluZGljYXRpbmcgY29uc2VydmF0aXZlIGNvbG9ycwp1c2VkY2FycyRjb25zZXJ2YXRpdmUgPC0KICB1c2VkY2FycyRjb2xvciAlaW4lIGMoIkJsYWNrIiwgIkdyYXkiLCAiU2lsdmVyIiwgIldoaXRlIikKYGBgCgoKYGBge3J9CiMgY2hlY2tpbmcgb3VyIHZhcmlhYmxlCnRhYmxlKHVzZWRjYXJzJGNvbnNlcnZhdGl2ZSkKYGBgCgpgYGB7ciwgbWVzc2FnZT0gVFJVRSwgd2FybmluZ3M9VFJVRSwgcmVzdWx0cz0iaGlkZSJ9Cmluc3RhbGwucGFja2FnZXMoImdtb2RlbHMiKQoKYGBgCgoKYGBge3J9CiMgQ3Jvc3N0YWIgb2YgY29uc2VydmF0aXZlIGJ5IG1vZGVsCmxpYnJhcnkoZ21vZGVscykKYGBgCgoKYGBge3J9CkNyb3NzVGFibGUoeCA9IHVzZWRjYXJzJG1vZGVsLCB5ID0gdXNlZGNhcnMkY29uc2VydmF0aXZlKQoKYGBgCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoK