Load Dataset

usedcars <- read.csv("usedcars.csv", stringsAsFactors = FALSE)
head(car)
# get structure of used car data
str(usedcars)
'data.frame':   150 obs. of  6 variables:
 $ year        : int  2011 2011 2011 2011 2012 2010 2011 2010 2011 2010 ...
 $ model       : chr  "SEL" "SEL" "SEL" "SEL" ...
 $ price       : int  21992 20995 19995 17809 17500 17495 17000 16995 16995 16995 ...
 $ mileage     : int  7413 10926 7351 11613 8367 25125 27393 21026 32655 36116 ...
 $ color       : chr  "Yellow" "Gray" "Silver" "Gray" ...
 $ transmission: chr  "AUTO" "AUTO" "AUTO" "AUTO" ...

Exploring numeric variables —–

# summarize numeric variables
summary(usedcars$year)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   2000    2008    2009    2009    2010    2012 
summary(usedcars[c("price", "mileage")])
     price          mileage      
 Min.   : 3800   Min.   :  4867  
 1st Qu.:10995   1st Qu.: 27200  
 Median :13592   Median : 36385  
 Mean   :12962   Mean   : 44261  
 3rd Qu.:14904   3rd Qu.: 55124  
 Max.   :21992   Max.   :151479  
# Calculate the mean income
(36000 + 44000 + 56000) / 3
[1] 45333.33
mean(c(36000, 44000, 56000))
[1] 45333.33
# the median income
median(c(36000, 44000, 56000))
[1] 44000
# the min/max of used car prices
range(usedcars$price)
[1]  3800 21992
# the difference of the range
diff(range(usedcars$price))
[1] 18192
# IQR for used car prices
IQR(usedcars$price)
[1] 3909.5
quantile(usedcars$price, probs = c(0.01, 0.99))
      1%      99% 
 5428.69 20505.00 
# quantiles
quantile(usedcars$price, seq(from = 0, to = 1, by = 0.20))
     0%     20%     40%     60%     80%    100% 
 3800.0 10759.4 12993.8 13992.0 14999.0 21992.0 
# boxplot of used car prices and mileage
boxplot(usedcars$price, main="Boxplot of Used Car Prices",
      ylab="Price ($)", col="red")

boxplot(usedcars$mileage, main="Boxplot of Used Car Mileage",
      ylab="Odometer (mi.)", col='green')

# histograms of used car prices and mileage
hist(usedcars$price, main = "Histogram of Used Car Prices",
     xlab = "Price ($)", col='yellow')

hist(usedcars$mileage, main = "Histogram of Used Car Mileage",
     xlab = "Odometer (mi.)", col='gold')

# variance and standard deviation of the used car data
var(usedcars$price)
[1] 9749892
sd(usedcars$price)
[1] 3122.482
var(usedcars$mileage)
[1] 728033954
sd(usedcars$mileage)
[1] 26982.1

Exploring numeric variables —–

# one-way tables for the used car data
table(usedcars$year)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 
   3    1    1    1    3    2    6   11   14   42   49   16    1 
table(usedcars$model)

 SE SEL SES 
 78  23  49 
table(usedcars$color)

 Black   Blue   Gold   Gray  Green    Red Silver  White Yellow 
    35     17      1     16      5     25     32     16      3 
# compute table proportion
model_table <- table(usedcars$model)
prop.table(model_table)

       SE       SEL       SES 
0.5200000 0.1533333 0.3266667 
# round the data
color_table <- table(usedcars$color)
color_pct <- prop.table(color_table) * 100
round(color_pct, digits = 1)

 Black   Blue   Gold   Gray  Green    Red Silver  White Yellow 
  23.3   11.3    0.7   10.7    3.3   16.7   21.3   10.7    2.0 

Exploring relationships between variables —–

# scatterplot of price vs. mileage
plot(x = usedcars$mileage, y = usedcars$price,
     main = "Scatterplot of Price vs. Mileage",
     xlab = "Used Car Odometer (mi.)",
     ylab = "Used Car Price ($)", col='blue')

# new variable indicating conservative colors
usedcars$conservative <-
  usedcars$color %in% c("Black", "Gray", "Silver", "White")
# checking our variable
table(usedcars$conservative)

FALSE  TRUE 
   51    99 
install.packages("gmodels")
# Crosstab of conservative by model
library(gmodels)
CrossTable(x = usedcars$model, y = usedcars$conservative)

 
   Cell Contents
|-------------------------|
|                       N |
| Chi-square contribution |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  150 

 
               | usedcars$conservative 
usedcars$model |     FALSE |      TRUE | Row Total | 
---------------|-----------|-----------|-----------|
            SE |        27 |        51 |        78 | 
               |     0.009 |     0.004 |           | 
               |     0.346 |     0.654 |     0.520 | 
               |     0.529 |     0.515 |           | 
               |     0.180 |     0.340 |           | 
---------------|-----------|-----------|-----------|
           SEL |         7 |        16 |        23 | 
               |     0.086 |     0.044 |           | 
               |     0.304 |     0.696 |     0.153 | 
               |     0.137 |     0.162 |           | 
               |     0.047 |     0.107 |           | 
---------------|-----------|-----------|-----------|
           SES |        17 |        32 |        49 | 
               |     0.007 |     0.004 |           | 
               |     0.347 |     0.653 |     0.327 | 
               |     0.333 |     0.323 |           | 
               |     0.113 |     0.213 |           | 
---------------|-----------|-----------|-----------|
  Column Total |        51 |        99 |       150 | 
               |     0.340 |     0.660 |           | 
---------------|-----------|-----------|-----------|

 
LS0tCnRpdGxlOiAiVXNlZCBDYXIgTm90ZWJvb2siCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCiMjIyBMb2FkIERhdGFzZXQKYGBge3J9CnVzZWRjYXJzIDwtIHJlYWQuY3N2KCJ1c2VkY2Fycy5jc3YiLCBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UpCmhlYWQodXNlZGNhcnMpCmBgYApgYGB7cn0KIyBzdHJ1Y3R1cmUgb2YgdXNlZCBjYXIgZGF0YQpzdHIodXNlZGNhcnMpCmBgYAoKIyMjICoqRXhwbG9yaW5nIG51bWVyaWMgdmFyaWFibGVzIOKAlOKAkyoqCgpgYGB7cn0KIyBzdW1tYXJpemUgbnVtZXJpYyB2YXJpYWJsZXMKc3VtbWFyeSh1c2VkY2FycyR5ZWFyKQpgYGAKCgoKYGBge3J9CnN1bW1hcnkodXNlZGNhcnNbYygicHJpY2UiLCAibWlsZWFnZSIpXSkKCmBgYAoKYGBge3J9CiMgQ2FsY3VsYXRlIHRoZSBtZWFuIGluY29tZQooMzYwMDAgKyA0NDAwMCArIDU2MDAwKSAvIDMKCmBgYAoKYGBge3J9Cm1lYW4oYygzNjAwMCwgNDQwMDAsIDU2MDAwKSkKCmBgYAoKYGBge3J9CiMgdGhlIG1lZGlhbiBpbmNvbWUKbWVkaWFuKGMoMzYwMDAsIDQ0MDAwLCA1NjAwMCkpCmBgYAoKCmBgYHtyfQojIG1pbi9tYXggb2YgdXNlZCBjYXIgcHJpY2VzCnJhbmdlKHVzZWRjYXJzJHByaWNlKQpgYGAKCgpgYGB7cn0KIyBkaWZmZXJlbmNlIG9mIHRoZSByYW5nZQpkaWZmKHJhbmdlKHVzZWRjYXJzJHByaWNlKSkKYGBgCgpgYGB7cn0KIyBJUVIgZm9yIHVzZWQgY2FyIHByaWNlcwpJUVIodXNlZGNhcnMkcHJpY2UpCmBgYAoKYGBge3J9CiMgOTl0aCBwZXJjZW50aWxlCnF1YW50aWxlKHVzZWRjYXJzJHByaWNlLCBwcm9icyA9IGMoMC4wMSwgMC45OSkpCmBgYAoKYGBge3J9CiMgcXVhbnRpbGVzCnF1YW50aWxlKHVzZWRjYXJzJHByaWNlLCBzZXEoZnJvbSA9IDAsIHRvID0gMSwgYnkgPSAwLjIwKSkKYGBgCgoKCmBgYHtyfQojIGJveHBsb3Qgb2YgdXNlZCBjYXIgcHJpY2VzIGFuZCBtaWxlYWdlCmJveHBsb3QodXNlZGNhcnMkcHJpY2UsIG1haW49IkJveHBsb3Qgb2YgVXNlZCBDYXIgUHJpY2VzIiwKICAgICAgeWxhYj0iUHJpY2UgKCQpIiwgY29sPSJyZWQiKQpgYGAKCgoKYGBge3J9CmJveHBsb3QodXNlZGNhcnMkbWlsZWFnZSwgbWFpbj0iQm94cGxvdCBvZiBVc2VkIENhciBNaWxlYWdlIiwKICAgICAgeWxhYj0iT2RvbWV0ZXIgKG1pLikiLCBjb2w9J2dyZWVuJykKYGBgCgoKCmBgYHtyfQojIGhpc3RvZ3JhbXMgb2YgdXNlZCBjYXIgcHJpY2VzIGFuZCBtaWxlYWdlCmhpc3QodXNlZGNhcnMkcHJpY2UsIG1haW4gPSAiSGlzdG9ncmFtIG9mIFVzZWQgQ2FyIFByaWNlcyIsCiAgICAgeGxhYiA9ICJQcmljZSAoJCkiLCBjb2w9J3llbGxvdycpCmBgYAoKYGBge3J9Cmhpc3QodXNlZGNhcnMkbWlsZWFnZSwgbWFpbiA9ICJIaXN0b2dyYW0gb2YgVXNlZCBDYXIgTWlsZWFnZSIsCiAgICAgeGxhYiA9ICJPZG9tZXRlciAobWkuKSIsIGNvbD0nZ29sZCcpCmBgYAoKYGBge3J9CiMgdmFyaWFuY2UgYW5kIHN0YW5kYXJkIGRldmlhdGlvbiBvZiB0aGUgdXNlZCBjYXIgZGF0YQp2YXIodXNlZGNhcnMkcHJpY2UpCmBgYAoKCmBgYHtyfQpzZCh1c2VkY2FycyRwcmljZSkKCmBgYAoKYGBge3J9CnZhcih1c2VkY2FycyRtaWxlYWdlKQoKYGBgCgpgYGB7cn0Kc2QodXNlZGNhcnMkbWlsZWFnZSkKCmBgYAoKYGBge3J9CgpgYGAKCgojIyMgKipFeHBsb3JpbmcgbnVtZXJpYyB2YXJpYWJsZXMg4oCU4oCTKioKCmBgYHtyfQojIG9uZS13YXkgdGFibGVzIGZvciB0aGUgdXNlZCBjYXIgZGF0YQp0YWJsZSh1c2VkY2FycyR5ZWFyKQpgYGAKCgpgYGB7cn0KdGFibGUodXNlZGNhcnMkbW9kZWwpCgpgYGAKCmBgYHtyfQp0YWJsZSh1c2VkY2FycyRjb2xvcikKCmBgYAoKYGBge3J9CiMgY29tcHV0ZSB0YWJsZSBwcm9wb3J0aW9uCm1vZGVsX3RhYmxlIDwtIHRhYmxlKHVzZWRjYXJzJG1vZGVsKQpwcm9wLnRhYmxlKG1vZGVsX3RhYmxlKQpgYGAKCmBgYHtyfQojIHJvdW5kIHRoZSBkYXRhCmNvbG9yX3RhYmxlIDwtIHRhYmxlKHVzZWRjYXJzJGNvbG9yKQpjb2xvcl9wY3QgPC0gcHJvcC50YWJsZShjb2xvcl90YWJsZSkgKiAxMDAKcm91bmQoY29sb3JfcGN0LCBkaWdpdHMgPSAxKQpgYGAKCgoKIyMjICoqRXhwbG9yaW5nIHJlbGF0aW9uc2hpcHMgYmV0d2VlbiB2YXJpYWJsZXMg4oCU4oCTKioKCmBgYHtyfQojIHNjYXR0ZXJwbG90IG9mIHByaWNlIHZzLiBtaWxlYWdlCnBsb3QoeCA9IHVzZWRjYXJzJG1pbGVhZ2UsIHkgPSB1c2VkY2FycyRwcmljZSwKICAgICBtYWluID0gIlNjYXR0ZXJwbG90IG9mIFByaWNlIHZzLiBNaWxlYWdlIiwKICAgICB4bGFiID0gIlVzZWQgQ2FyIE9kb21ldGVyIChtaS4pIiwKICAgICB5bGFiID0gIlVzZWQgQ2FyIFByaWNlICgkKSIsIGNvbD0nYmx1ZScpCmBgYAoKYGBge3J9CiMgbmV3IHZhcmlhYmxlIGluZGljYXRpbmcgY29uc2VydmF0aXZlIGNvbG9ycwp1c2VkY2FycyRjb25zZXJ2YXRpdmUgPC0KICB1c2VkY2FycyRjb2xvciAlaW4lIGMoIkJsYWNrIiwgIkdyYXkiLCAiU2lsdmVyIiwgIldoaXRlIikKYGBgCgoKYGBge3J9CiMgY2hlY2tpbmcgb3VyIHZhcmlhYmxlCnRhYmxlKHVzZWRjYXJzJGNvbnNlcnZhdGl2ZSkKYGBgCgpgYGB7ciwgbWVzc2FnZT0gVFJVRSwgd2FybmluZ3M9VFJVRSwgcmVzdWx0cz0iaGlkZSJ9Cmluc3RhbGwucGFja2FnZXMoImdtb2RlbHMiKQoKYGBgCgoKYGBge3J9CiMgQ3Jvc3N0YWIgb2YgY29uc2VydmF0aXZlIGJ5IG1vZGVsCmxpYnJhcnkoZ21vZGVscykKYGBgCgoKYGBge3J9CkNyb3NzVGFibGUoeCA9IHVzZWRjYXJzJG1vZGVsLCB5ID0gdXNlZGNhcnMkY29uc2VydmF0aXZlKQoKYGBgCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoK