getwd()
[1] "/cloud/project"
usedcars <- read.csv("usedcars.csv", stringsAsFactors = FALSE)
#Get structure of used car data
str(usedcars)
'data.frame': 150 obs. of 6 variables:
$ year : int 2011 2011 2011 2011 2012 2010 2011 2010 2011 2010 ...
$ model : chr "SEL" "SEL" "SEL" "SEL" ...
$ price : int 21992 20995 19995 17809 17500 17495 17000 16995 16995 16995 ...
$ mileage : int 7413 10926 7351 11613 8367 25125 27393 21026 32655 36116 ...
$ color : chr "Yellow" "Gray" "Silver" "Gray" ...
$ transmission: chr "AUTO" "AUTO" "AUTO" "AUTO" ...
usedcars
str(usedcars)
'data.frame': 150 obs. of 6 variables:
$ year : int 2011 2011 2011 2011 2012 2010 2011 2010 2011 2010 ...
$ model : chr "SEL" "SEL" "SEL" "SEL" ...
$ price : int 21992 20995 19995 17809 17500 17495 17000 16995 16995 16995 ...
$ mileage : int 7413 10926 7351 11613 8367 25125 27393 21026 32655 36116 ...
$ color : chr "Yellow" "Gray" "Silver" "Gray" ...
$ transmission: chr "AUTO" "AUTO" "AUTO" "AUTO" ...
##Exploring numeric variables —
# Summarize numeric variables
summary(usedcars$year)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2000 2008 2009 2009 2010 2012
summary(usedcars[c("price","mileage")])
price mileage
Min. : 3800 Min. : 4867
1st Qu.:10995 1st Qu.: 27200
Median :13592 Median : 36385
Mean :12962 Mean : 44261
3rd Qu.:14904 3rd Qu.: 55124
Max. :21992 Max. :151479
#Calculate the mean income
(36000 + 44000 + 56000 ) / 3
[1] 45333.33
#Mean
mean(c(36000,44000,56000))
[1] 45333.33
#The median income
median(c(36000,44000,56000))
[1] 44000
#The min/max of used car prices
range(usedcars$price)
[1] 3800 21992
#The difference of the range
diff(range(usedcars$price))
[1] 18192
#IQR for used car prices
IQR(usedcars$price)
[1] 3909.5
#Use quantile to calculate five-number summary
quantile(usedcars$price)
0% 25% 50% 75% 100%
3800.0 10995.0 13591.5 14904.5 21992.0
#Use quantile to calculate 5 number summary
quantile(usedcars$price)
0% 25% 50% 75% 100%
3800.0 10995.0 13591.5 14904.5 21992.0
#The 99th percentile
quantile(usedcars$price, probs = c(0.01,0.99))
1% 99%
5428.69 20505.00
#Quintiles
quantile(usedcars$price, seq(from=0, to=1, by=0.20))
0% 20% 40% 60% 80% 100%
3800.0 10759.4 12993.8 13992.0 14999.0 21992.0
#Boxplot of used car prices and mileage
boxplot(usedcars$price, main="Boxplot of Used Car Prices",
ylab="Price ($)")
boxplot(usedcars$mileage, main="Boxplot of Used Car Mileage",
ylab="Odometer (mi.)")
#Histograms of used car prices and mileage
hist(usedcars$price, main="Histogram of Used Car Prices",
xlab="Price ($)")
hist(usedcars$mileage, main = "Histogram of Used Car Mileage",
xlab = "Odometer (mi.)")
#Variance and standard deviation of the used car data
var(usedcars$price)
[1] 9749892
sd(usedcars$price)
[1] 3122.482
var(usedcars$mileage)
[1] 728033954
sd(usedcars$mileage)
[1] 26982.1
##Exploring Numeric Variables —
#One-way tables for the used car data
table(usedcars$year)
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
3 1 1 1 3 2 6 11 14 42 49 16 1
table(usedcars$model)
SE SEL SES
78 23 49
table(usedcars$color)
Black Blue Gold Gray Green Red Silver White Yellow
35 17 1 16 5 25 32 16 3
#Compute table proportions
model_table <- table(usedcars$model)
prop.table(model_table)
SE SEL SES
0.5200000 0.1533333 0.3266667
#Round the data
color_table <- table(usedcars$color)
color_pct <- prop.table(color_table) * 100
round(color_pct,digits = 1)
Black Blue Gold Gray Green Red Silver White Yellow
23.3 11.3 0.7 10.7 3.3 16.7 21.3 10.7 2.0
##Exploring relationships between variables —
#Scatterplot of price vs. mileage
plot(x = usedcars$mileage, y = usedcars$price,
main = "Scatterplot of Price vs. Mileage",
xlab = "Used Car Odometer (mi.)",
ylab = "Used Car Price ($)")
#New Variable Indicating Conservative Colors
usedcars$conservative <-
usedcars$color %in% c("Black","Gray","Silver","White")
#Checking our Variable
table(usedcars$conservative)
FALSE TRUE
51 99
install.packages("gmodels")
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/gtools_3.9.5.tar.gz'
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/gdata_3.0.1.tar.gz'
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/gmodels_2.19.1.tar.gz'
The downloaded source packages are in
‘/tmp/RtmpjiN2vb/downloaded_packages’
#Crosstab of conservative by model
library(gmodels)
CrossTable(x = usedcars$model, y = usedcars$conservative)
Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|
Total Observations in Table: 150
| usedcars$conservative
usedcars$model | FALSE | TRUE | Row Total |
---------------|-----------|-----------|-----------|
SE | 27 | 51 | 78 |
| 0.009 | 0.004 | |
| 0.346 | 0.654 | 0.520 |
| 0.529 | 0.515 | |
| 0.180 | 0.340 | |
---------------|-----------|-----------|-----------|
SEL | 7 | 16 | 23 |
| 0.086 | 0.044 | |
| 0.304 | 0.696 | 0.153 |
| 0.137 | 0.162 | |
| 0.047 | 0.107 | |
---------------|-----------|-----------|-----------|
SES | 17 | 32 | 49 |
| 0.007 | 0.004 | |
| 0.347 | 0.653 | 0.327 |
| 0.333 | 0.323 | |
| 0.113 | 0.213 | |
---------------|-----------|-----------|-----------|
Column Total | 51 | 99 | 150 |
| 0.340 | 0.660 | |
---------------|-----------|-----------|-----------|