getwd()
[1] "/cloud/project"
usedcars <- read.csv("usedcars.csv", stringsAsFactors = FALSE)
usedcars
# get structure of used car data
str(usedcars)
'data.frame':   150 obs. of  6 variables:
 $ year        : int  2011 2011 2011 2011 2012 2010 2011 2010 2011 2010 ...
 $ model       : chr  "SEL" "SEL" "SEL" "SEL" ...
 $ price       : int  21992 20995 19995 17809 17500 17495 17000 16995 16995 16995 ...
 $ mileage     : int  7413 10926 7351 11613 8367 25125 27393 21026 32655 36116 ...
 $ color       : chr  "Yellow" "Gray" "Silver" "Gray" ...
 $ transmission: chr  "AUTO" "AUTO" "AUTO" "AUTO" ...
# summarize numeric variables
summary(usedcars$year)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   2000    2008    2009    2009    2010    2012 
summary(usedcars[c("price", "color")])
     price          color          
 Min.   : 3800   Length:150        
 1st Qu.:10995   Class :character  
 Median :13592   Mode  :character  
 Mean   :12962                     
 3rd Qu.:14904                     
 Max.   :21992                     

Exploring numeric variables

# summarize numeric variables
summary(usedcars$year)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   2000    2008    2009    2009    2010    2012 
# the difference of the range
diff(range(usedcars$price))
[1] 18192
# IQR for used car prices
IQR(usedcars$price)
[1] 3909.5
# use quantile to calculate five-number summary
quantile(usedcars$price)
     0%     25%     50%     75%    100% 
 3800.0 10995.0 13591.5 14904.5 21992.0 
# the 99th percentile
quantile(usedcars$price, probs = c(0.01, 0.99))
      1%      99% 
 5428.69 20505.00 
# quintiles
quantile(usedcars$price, seq(from = 0, to = 1, by = 0.20))
     0%     20%     40%     60%     80%    100% 
 3800.0 10759.4 12993.8 13992.0 14999.0 21992.0 
# boxplot of used car prices and mileage
boxplot(usedcars$price, main="Boxplot of Used Car Prices",
      ylab="Price ($)")

boxplot(usedcars$mileage, main="Boxplot of Used Car Mileage",
      ylab="Odometer (mi.)")

# histograms of used car prices and mileage
hist(usedcars$price, main = "Histogram of Used Car Prices",
     xlab = "Price ($)")

hist(usedcars$mileage, main = "Histogram of Used Car Mileage",
     xlab = "Odometer (mi.)")

# variance and standard deviation of the used car data
var(usedcars$price)
[1] 9749892
sd(usedcars$price)
[1] 3122.482
var(usedcars$mileage)
[1] 728033954
sd(usedcars$mileage)
[1] 26982.1
# one-way tables for the used car data
table(usedcars$year)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 
   3    1    1    1    3    2    6   11   14   42   49   16    1 
table(usedcars$model)

 SE SEL SES 
 78  23  49 
table(usedcars$color)

 Black   Blue   Gold   Gray  Green    Red Silver  White Yellow 
    35     17      1     16      5     25     32     16      3 
# compute table proportions
model_table <- table(usedcars$model)
prop.table(model_table)

       SE       SEL       SES 
0.5200000 0.1533333 0.3266667 
# round the data
color_table <- table(usedcars$color)
color_pct <- prop.table(color_table) * 100
round(color_pct, digits = 1)

 Black   Blue   Gold   Gray  Green    Red Silver  White Yellow 
  23.3   11.3    0.7   10.7    3.3   16.7   21.3   10.7    2.0 
# scatterplot of price vs. mileage
plot(x = usedcars$mileage, y = usedcars$price,
     main = "Scatterplot of Price vs. Mileage",
     xlab = "Used Car Odometer (mi.)",
     ylab = "Used Car Price ($)")

# new variable indicating conservative colors
usedcars$conservative <-
  usedcars$color %in% c("Black", "Gray", "Silver", "White")
# checking our variable
table(usedcars$conservative)

FALSE  TRUE 
   51    99 

install.packages("gmodels")
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/gtools_3.9.5.tar.gz'
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/gdata_3.0.1.tar.gz'
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/gmodels_2.19.1.tar.gz'

The downloaded source packages are in
    ‘/tmp/RtmpwS0QBb/downloaded_packages’
# Crosstab of conservative by model
library(gmodels)
CrossTable(x = usedcars$model, y = usedcars$conservative)

 
   Cell Contents
|-------------------------|
|                       N |
| Chi-square contribution |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  150 

 
               | usedcars$conservative 
usedcars$model |     FALSE |      TRUE | Row Total | 
---------------|-----------|-----------|-----------|
            SE |        27 |        51 |        78 | 
               |     0.009 |     0.004 |           | 
               |     0.346 |     0.654 |     0.520 | 
               |     0.529 |     0.515 |           | 
               |     0.180 |     0.340 |           | 
---------------|-----------|-----------|-----------|
           SEL |         7 |        16 |        23 | 
               |     0.086 |     0.044 |           | 
               |     0.304 |     0.696 |     0.153 | 
               |     0.137 |     0.162 |           | 
               |     0.047 |     0.107 |           | 
---------------|-----------|-----------|-----------|
           SES |        17 |        32 |        49 | 
               |     0.007 |     0.004 |           | 
               |     0.347 |     0.653 |     0.327 | 
               |     0.333 |     0.323 |           | 
               |     0.113 |     0.213 |           | 
---------------|-----------|-----------|-----------|
  Column Total |        51 |        99 |       150 | 
               |     0.340 |     0.660 |           | 
---------------|-----------|-----------|-----------|

 
LS0tCnRpdGxlOiAiSW4gQ2xhc3MgQWN0aXZpdHkgNCIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCgoKYGBge3J9CmdldHdkKCkKYGBgCgoKYGBge3J9CnVzZWRjYXJzIDwtIHJlYWQuY3N2KCJ1c2VkY2Fycy5jc3YiLCBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UpCmBgYAoKCgpgYGB7cn0KdXNlZGNhcnMKYGBgCgoKYGBge3J9CiMgZ2V0IHN0cnVjdHVyZSBvZiB1c2VkIGNhciBkYXRhCnN0cih1c2VkY2FycykKYGBgCgoKCmBgYHtyfQojIHN1bW1hcml6ZSBudW1lcmljIHZhcmlhYmxlcwpzdW1tYXJ5KHVzZWRjYXJzJHllYXIpCmBgYAoKCgoKYGBge3J9CnN1bW1hcnkodXNlZGNhcnNbYygicHJpY2UiLCAibWlsZWFnZSIpXSkKYGBgCgoqKkV4cGxvcmluZyBudW1lcmljIHZhcmlhYmxlcyoqCgpgYGB7cn0KIyBzdW1tYXJpemUgbnVtZXJpYyB2YXJpYWJsZXMKc3VtbWFyeSh1c2VkY2FycyR5ZWFyKQpgYGAKCgpgYGB7cn0KIyB0aGUgZGlmZmVyZW5jZSBvZiB0aGUgcmFuZ2UKZGlmZihyYW5nZSh1c2VkY2FycyRwcmljZSkpCmBgYAoKCgoKCmBgYHtyfQojIElRUiBmb3IgdXNlZCBjYXIgcHJpY2VzCklRUih1c2VkY2FycyRwcmljZSkKYGBgCgoKCgpgYGB7cn0KIyB1c2UgcXVhbnRpbGUgdG8gY2FsY3VsYXRlIGZpdmUtbnVtYmVyIHN1bW1hcnkKcXVhbnRpbGUodXNlZGNhcnMkcHJpY2UpCmBgYAoKYGBge3J9CiMgdGhlIDk5dGggcGVyY2VudGlsZQpxdWFudGlsZSh1c2VkY2FycyRwcmljZSwgcHJvYnMgPSBjKDAuMDEsIDAuOTkpKQpgYGAKCgoKYGBge3J9CiMgcXVpbnRpbGVzCnF1YW50aWxlKHVzZWRjYXJzJHByaWNlLCBzZXEoZnJvbSA9IDAsIHRvID0gMSwgYnkgPSAwLjIwKSkKYGBgCgpgYGB7cn0KIyBib3hwbG90IG9mIHVzZWQgY2FyIHByaWNlcyBhbmQgbWlsZWFnZQpib3hwbG90KHVzZWRjYXJzJHByaWNlLCBtYWluPSJCb3hwbG90IG9mIFVzZWQgQ2FyIFByaWNlcyIsCiAgICAgIHlsYWI9IlByaWNlICgkKSIpCmBgYAoKCgpgYGB7cn0KYm94cGxvdCh1c2VkY2FycyRtaWxlYWdlLCBtYWluPSJCb3hwbG90IG9mIFVzZWQgQ2FyIE1pbGVhZ2UiLAogICAgICB5bGFiPSJPZG9tZXRlciAobWkuKSIpCgpgYGAKCgoKYGBge3J9CiMgaGlzdG9ncmFtcyBvZiB1c2VkIGNhciBwcmljZXMgYW5kIG1pbGVhZ2UKaGlzdCh1c2VkY2FycyRwcmljZSwgbWFpbiA9ICJIaXN0b2dyYW0gb2YgVXNlZCBDYXIgUHJpY2VzIiwKICAgICB4bGFiID0gIlByaWNlICgkKSIpCmBgYAoKCgpgYGB7cn0KaGlzdCh1c2VkY2FycyRtaWxlYWdlLCBtYWluID0gIkhpc3RvZ3JhbSBvZiBVc2VkIENhciBNaWxlYWdlIiwKICAgICB4bGFiID0gIk9kb21ldGVyIChtaS4pIikKYGBgCgpgYGB7cn0KIyB2YXJpYW5jZSBhbmQgc3RhbmRhcmQgZGV2aWF0aW9uIG9mIHRoZSB1c2VkIGNhciBkYXRhCnZhcih1c2VkY2FycyRwcmljZSkKYGBgCgoKCmBgYHtyfQpzZCh1c2VkY2FycyRwcmljZSkKYGBgCgpgYGB7cn0KdmFyKHVzZWRjYXJzJG1pbGVhZ2UpCmBgYAoKYGBge3J9CnNkKHVzZWRjYXJzJG1pbGVhZ2UpCmBgYAoKCgoKYGBge3J9CiMgb25lLXdheSB0YWJsZXMgZm9yIHRoZSB1c2VkIGNhciBkYXRhCnRhYmxlKHVzZWRjYXJzJHllYXIpCmBgYAoKCgpgYGB7cn0KdGFibGUodXNlZGNhcnMkbW9kZWwpCmBgYAoKCgpgYGB7cn0KdGFibGUodXNlZGNhcnMkY29sb3IpCmBgYAoKYGBge3J9CiMgY29tcHV0ZSB0YWJsZSBwcm9wb3J0aW9ucwptb2RlbF90YWJsZSA8LSB0YWJsZSh1c2VkY2FycyRtb2RlbCkKcHJvcC50YWJsZShtb2RlbF90YWJsZSkKYGBgCgpgYGB7cn0KIyByb3VuZCB0aGUgZGF0YQpjb2xvcl90YWJsZSA8LSB0YWJsZSh1c2VkY2FycyRjb2xvcikKY29sb3JfcGN0IDwtIHByb3AudGFibGUoY29sb3JfdGFibGUpICogMTAwCnJvdW5kKGNvbG9yX3BjdCwgZGlnaXRzID0gMSkKYGBgCgoKCmBgYHtyfQojIHNjYXR0ZXJwbG90IG9mIHByaWNlIHZzLiBtaWxlYWdlCnBsb3QoeCA9IHVzZWRjYXJzJG1pbGVhZ2UsIHkgPSB1c2VkY2FycyRwcmljZSwKICAgICBtYWluID0gIlNjYXR0ZXJwbG90IG9mIFByaWNlIHZzLiBNaWxlYWdlIiwKICAgICB4bGFiID0gIlVzZWQgQ2FyIE9kb21ldGVyIChtaS4pIiwKICAgICB5bGFiID0gIlVzZWQgQ2FyIFByaWNlICgkKSIpCmBgYAoKCgoKYGBge3J9CiMgbmV3IHZhcmlhYmxlIGluZGljYXRpbmcgY29uc2VydmF0aXZlIGNvbG9ycwp1c2VkY2FycyRjb25zZXJ2YXRpdmUgPC0KICB1c2VkY2FycyRjb2xvciAlaW4lIGMoIkJsYWNrIiwgIkdyYXkiLCAiU2lsdmVyIiwgIldoaXRlIikKYGBgCgoKCgpgYGB7cn0KIyBjaGVja2luZyBvdXIgdmFyaWFibGUKdGFibGUodXNlZGNhcnMkY29uc2VydmF0aXZlKQpgYGAKCgpgYGB7cn0KCmluc3RhbGwucGFja2FnZXMoImdtb2RlbHMiKQpgYGAKCmBgYHtyfQojIENyb3NzdGFiIG9mIGNvbnNlcnZhdGl2ZSBieSBtb2RlbApsaWJyYXJ5KGdtb2RlbHMpCmBgYAoKCmBgYHtyfQpDcm9zc1RhYmxlKHggPSB1c2VkY2FycyRtb2RlbCwgeSA9IHVzZWRjYXJzJGNvbnNlcnZhdGl2ZSkKYGBgCgo=