#Question_1: Compute the log base 5 of 10 and the log of 10.
log(10, base =5)
[1] 1.430677
#Question_2:What is the batting average of a player that bats 42 hits
in 212 at bats?
BA=(42)/(212)
BA
[1] 0.1981132
#Question_3:Compute the OBP for a player with the following general
stats: #AB=565,H=156,BB=65,HBP=3,SF=7 #On Base Percentage
#OBP=(H+BB+HBP)/(At Bats+H+BB+HBP+SF)
OBP=(156+65+3)/(565+156+65+3+7)
OBP
[1] 0.281407
On_Base_Percentage=round(OBP,digits = 3)
On_Base_Percentage
[1] 0.281
#Question_4: Define two vectors,runs_per_9innings and
hits_per_9innings, each with five elements.
runs_per_9innings <- c(4, 7, 8, 2, 4)
hits_per_9innings <- c(5, 8, 1, 9, 3)
print(runs_per_9innings)
[1] 4 7 8 2 4
print(hits_per_9innings)
[1] 5 8 1 9 3
#Question_5: Get the first element of hits_per_9innings.
hits_per_9innings [1]
[1] 5
#Question_6: Get the last element of hits_per_9innings.
last_element <- hits_per_9innings[length(hits_per_9innings)]
print(last_element)
[1] 3
#Question_7: Find the most frequent value of hits_per_9innings.
getMode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
getMode(hits_per_9innings)
[1] 5
#Question_8: Summarize the following survey with the
table() command: #What is your favorite day of the week to
watch baseball? A total of 10 fans submitted this survey. #Saturday,
Saturday, Sunday, Monday, Saturday,Tuesday, Sunday, Friday, Friday,
Monday
x <- c("Saturday", "Saturday", "Sunday", "Monday", "Saturday","Tuesday", "Sunday", "Friday", "Friday", "Monday")
table(x)
x
Friday Monday Saturday Sunday Tuesday
2 2 3 2 1
#Question_9: What is the most frequent answer recorded in the survey?
Use the getMode function to compute results.
getMode(game_day)
[1] "Saturday"
LS0tCnRpdGxlOiAiQ2xhc3MgQWN0aXZpdHkgIzEiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCiNRdWVzdGlvbl8xOiBDb21wdXRlIHRoZSBsb2cgYmFzZSA1IG9mIDEwIGFuZCB0aGUgbG9nIG9mIDEwLgoKYGBge3J9CmxvZygxMCwgYmFzZSA9NSkKYGBgCiNRdWVzdGlvbl8yOldoYXQgaXMgdGhlIGJhdHRpbmcgYXZlcmFnZSBvZiBhIHBsYXllciB0aGF0IGJhdHMgNDIgaGl0cyBpbiAyMTIgYXQgYmF0cz8KCmBgYHtyfQpCQT0oNDIpLygyMTIpCkJBCmBgYAojUXVlc3Rpb25fMzpDb21wdXRlIHRoZSBPQlAgZm9yIGEgcGxheWVyIHdpdGggdGhlIGZvbGxvd2luZyBnZW5lcmFsIHN0YXRzOgojQUI9NTY1LEg9MTU2LEJCPTY1LEhCUD0zLFNGPTcKI09uIEJhc2UgUGVyY2VudGFnZQojT0JQPShIK0JCK0hCUCkvKEF0IEJhdHMrSCtCQitIQlArU0YpCgpgYGB7cn0KT0JQPSgxNTYrNjUrMykvKDU2NSsxNTYrNjUrMys3KQpPQlAKYGBgCmBgYHtyfQpPbl9CYXNlX1BlcmNlbnRhZ2U9cm91bmQoT0JQLGRpZ2l0cyA9IDMpCk9uX0Jhc2VfUGVyY2VudGFnZQpgYGAKCiNRdWVzdGlvbl80OiBEZWZpbmUgdHdvIHZlY3RvcnMscnVuc19wZXJfOWlubmluZ3MgYW5kIGhpdHNfcGVyXzlpbm5pbmdzLCBlYWNoIHdpdGggZml2ZSBlbGVtZW50cy4KCmBgYHtyfQpydW5zX3Blcl85aW5uaW5ncyA8LSBjKDQsIDcsIDgsIDIsIDQpCmhpdHNfcGVyXzlpbm5pbmdzIDwtIGMoNSwgOCwgMSwgOSwgMykKCnByaW50KHJ1bnNfcGVyXzlpbm5pbmdzKQpwcmludChoaXRzX3Blcl85aW5uaW5ncykKYGBgCgojUXVlc3Rpb25fNTogR2V0IHRoZSBmaXJzdCBlbGVtZW50IG9mIGhpdHNfcGVyXzlpbm5pbmdzLgoKYGBge3J9CmhpdHNfcGVyXzlpbm5pbmdzIFsxXQpgYGAKCiNRdWVzdGlvbl82OiBHZXQgdGhlIGxhc3QgZWxlbWVudCBvZiBoaXRzX3Blcl85aW5uaW5ncy4KCmBgYHtyfQpsYXN0X2VsZW1lbnQgPC0gaGl0c19wZXJfOWlubmluZ3NbbGVuZ3RoKGhpdHNfcGVyXzlpbm5pbmdzKV0KcHJpbnQobGFzdF9lbGVtZW50KQpgYGAKCiNRdWVzdGlvbl83OiBGaW5kIHRoZSBtb3N0IGZyZXF1ZW50IHZhbHVlIG9mIGhpdHNfcGVyXzlpbm5pbmdzLgoKYGBge3J9CmdldE1vZGUgPC0gZnVuY3Rpb24oeCkgewogICAgIHV4IDwtIHVuaXF1ZSh4KQogICAgIHV4W3doaWNoLm1heCh0YWJ1bGF0ZShtYXRjaCh4LCB1eCkpKV0KfQoKZ2V0TW9kZShoaXRzX3Blcl85aW5uaW5ncykKYGBgCgojUXVlc3Rpb25fODogU3VtbWFyaXplIHRoZSBmb2xsb3dpbmcgc3VydmV5IHdpdGggdGhlIGB0YWJsZSgpYCBjb21tYW5kOgojV2hhdCBpcyB5b3VyIGZhdm9yaXRlIGRheSBvZiB0aGUgd2VlayB0byB3YXRjaCBiYXNlYmFsbD8gQSB0b3RhbCBvZiAxMCBmYW5zIHN1Ym1pdHRlZCB0aGlzIHN1cnZleS4KI1NhdHVyZGF5LCBTYXR1cmRheSwgU3VuZGF5LCBNb25kYXksIFNhdHVyZGF5LFR1ZXNkYXksIFN1bmRheSwgRnJpZGF5LCBGcmlkYXksIE1vbmRheQoKYGBge3J9CnggPC0gYygiU2F0dXJkYXkiLCAiU2F0dXJkYXkiLCAiU3VuZGF5IiwgIk1vbmRheSIsICJTYXR1cmRheSIsIlR1ZXNkYXkiLCAiU3VuZGF5IiwgIkZyaWRheSIsICJGcmlkYXkiLCAiTW9uZGF5IikgCnRhYmxlKHgpCgpgYGAKCiNRdWVzdGlvbl85OiBXaGF0IGlzIHRoZSBtb3N0IGZyZXF1ZW50IGFuc3dlciByZWNvcmRlZCBpbiB0aGUgc3VydmV5PyBVc2UgdGhlIGdldE1vZGUgZnVuY3Rpb24gdG8gY29tcHV0ZSByZXN1bHRzLiAKCmBgYHtyfQpnZXRNb2RlKGdhbWVfZGF5KQpgYGAKCg==