# create vectors of data for three medical patients
subject_name <- c("John Doe", "Jane Doe", "Steve Graves")
temperature <- c(98.1, 98.6, 101.4)
flu_status <- c(FALSE, FALSE, TRUE)
# access the second element in body temperature vector
temperature[2]
[1] 98.6
# include items in the range 2 to 3
temperature[2:3]
[1]  98.6 101.4
# include items in the range 2 to 3
temperature[2:3]
[1]  98.6 101.4
# use a vector to indicate whether to include item
temperature[c(TRUE, TRUE, FALSE)]
[1] 98.1 98.6
# add gender factor
gender <- factor(c("MALE", "FEMALE", "MALE"))
gender
[1] MALE   FEMALE MALE  
Levels: FEMALE MALE
# add blood type factor
blood <- factor(c("O", "AB", "A"),
                levels = c("A", "B", "AB", "O"))
blood
[1] O  AB A 
Levels: A B AB O
# add ordered factor
symptoms <- factor(c("SEVERE", "MILD", "MODERATE"),
                   levels = c("MILD", "MODERATE", "SEVERE"),
                   ordered = TRUE)
symptoms
[1] SEVERE   MILD     MODERATE
Levels: MILD < MODERATE < SEVERE
# check for symptoms greater than moderate
symptoms > "MODERATE"
[1]  TRUE FALSE FALSE
# display information for a patient
subject_name[1]
[1] "John Doe"
temperature[1]
[1] 98.1
flu_status[1]
[1] FALSE
gender[2]
[1] FEMALE
Levels: FEMALE MALE
blood[1]
[1] O
Levels: A B AB O
symptoms[1]
[1] SEVERE
Levels: MILD < MODERATE < SEVERE
# create list for a patient
subject1 <- list(fullname = subject_name[1], 
                 temperature = temperature[1],
                 flu_status = flu_status[1],
                 gender = gender[1],
                 blood = blood[1],
                 symptoms = symptoms[1])
# display the patient
subject1
$fullname
[1] "John Doe"

$temperature
[1] 98.1

$flu_status
[1] FALSE

$gender
[1] MALE
Levels: FEMALE MALE

$blood
[1] O
Levels: A B AB O

$symptoms
[1] SEVERE
Levels: MILD < MODERATE < SEVERE
# get a single list value by position (returns a sub-list)
subject1[2]
$temperature
[1] 98.1
# get a single list value by position (returns a numeric vector)
subject1[[2]]
[1] 98.1
# get a single list value by name
subject1$temperature
[1] 98.1
# get several list items by specifying a vector of names
subject1[c("temperature", "flu_status")]
$temperature
[1] 98.1

$flu_status
[1] FALSE
# get values 2 and 3
subject1[2:3]
$temperature
[1] 98.1

$flu_status
[1] FALSE
pt_data <- data.frame(subject_name, temperature, flu_status, gender,
                      blood, symptoms, stringsAsFactors = FALSE)
# display the data frame
pt_data
# get a single column
pt_data$subject_name
[1] "John Doe"     "Jane Doe"     "Steve Graves"
# get several columns by specifying a vector of names
pt_data[c("temperature", "flu_status")]
# this is the same as above, extracting temperature and flu_status
pt_data[2:3]
# accessing by row and column
pt_data[1, 2]
[1] 98.1
# accessing several rows and several columns using vectors
pt_data[c(1, 3), c(2, 4)]
# all rows and all columns
pt_data[ , ]
# the following are equivalent
pt_data[c(1, 3), c("temperature", "gender")]
# creating a Celsius temperature column
pt_data$temp_c <- (pt_data$temperature - 32) * (5 / 9)
# comparing before and after
pt_data[c("temperature", "temp_c")]
# create a 2x2 matrix
m <- matrix(c(1, 2, 3, 4), nrow = 2)
m
     [,1] [,2]
[1,]    1    3
[2,]    2    4
# equivalent to the above
m <- matrix(c(1, 2, 3, 4), ncol = 2)
m
     [,1] [,2]
[1,]    1    3
[2,]    2    4
# create a 2x3 matrix
m <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2)
m
     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6
# create a 3x2 matrix
m <- matrix(c(1, 2, 3, 4, 5, 6), ncol = 2)
m
     [,1] [,2]
[1,]    1    4
[2,]    2    5
[3,]    3    6
# extract values from matrixes
m[1, 1]
[1] 1
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CiMgY3JlYXRlIHZlY3RvcnMgb2YgZGF0YSBmb3IgdGhyZWUgbWVkaWNhbCBwYXRpZW50cwpzdWJqZWN0X25hbWUgPC0gYygiSm9obiBEb2UiLCAiSmFuZSBEb2UiLCAiU3RldmUgR3JhdmVzIikKdGVtcGVyYXR1cmUgPC0gYyg5OC4xLCA5OC42LCAxMDEuNCkKZmx1X3N0YXR1cyA8LSBjKEZBTFNFLCBGQUxTRSwgVFJVRSkKYGBgCgpgYGB7cn0KIyBhY2Nlc3MgdGhlIHNlY29uZCBlbGVtZW50IGluIGJvZHkgdGVtcGVyYXR1cmUgdmVjdG9yCnRlbXBlcmF0dXJlWzJdCmBgYAoKCmBgYHtyfQojIGluY2x1ZGUgaXRlbXMgaW4gdGhlIHJhbmdlIDIgdG8gMwp0ZW1wZXJhdHVyZVsyOjNdCmBgYAoKYGBge3J9CiMgaW5jbHVkZSBpdGVtcyBpbiB0aGUgcmFuZ2UgMiB0byAzCnRlbXBlcmF0dXJlWzI6M10KYGBgCgpgYGB7cn0KIyB1c2UgYSB2ZWN0b3IgdG8gaW5kaWNhdGUgd2hldGhlciB0byBpbmNsdWRlIGl0ZW0KdGVtcGVyYXR1cmVbYyhUUlVFLCBUUlVFLCBGQUxTRSldCmBgYAoKYGBge3J9CiMgYWRkIGdlbmRlciBmYWN0b3IKZ2VuZGVyIDwtIGZhY3RvcihjKCJNQUxFIiwgIkZFTUFMRSIsICJNQUxFIikpCmdlbmRlcgpgYGAKCgpgYGB7cn0KIyBhZGQgYmxvb2QgdHlwZSBmYWN0b3IKYmxvb2QgPC0gZmFjdG9yKGMoIk8iLCAiQUIiLCAiQSIpLAogICAgICAgICAgICAgICAgbGV2ZWxzID0gYygiQSIsICJCIiwgIkFCIiwgIk8iKSkKYmxvb2QKYGBgCgpgYGB7cn0KIyBhZGQgb3JkZXJlZCBmYWN0b3IKc3ltcHRvbXMgPC0gZmFjdG9yKGMoIlNFVkVSRSIsICJNSUxEIiwgIk1PREVSQVRFIiksCiAgICAgICAgICAgICAgICAgICBsZXZlbHMgPSBjKCJNSUxEIiwgIk1PREVSQVRFIiwgIlNFVkVSRSIpLAogICAgICAgICAgICAgICAgICAgb3JkZXJlZCA9IFRSVUUpCnN5bXB0b21zCmBgYAoKCmBgYHtyfQojIGNoZWNrIGZvciBzeW1wdG9tcyBncmVhdGVyIHRoYW4gbW9kZXJhdGUKc3ltcHRvbXMgPiAiTU9ERVJBVEUiCmBgYAoKCgpgYGB7cn0KIyBkaXNwbGF5IGluZm9ybWF0aW9uIGZvciBhIHBhdGllbnQKc3ViamVjdF9uYW1lWzFdCmBgYAoKYGBge3J9CnRlbXBlcmF0dXJlWzFdCmBgYAoKYGBge3J9CmZsdV9zdGF0dXNbMV0KYGBgCgpgYGB7cn0KZ2VuZGVyWzJdCmBgYAoKYGBge3J9CmJsb29kWzFdCmBgYAoKYGBge3J9CnN5bXB0b21zWzFdCmBgYAoKYGBge3J9CiMgY3JlYXRlIGxpc3QgZm9yIGEgcGF0aWVudApzdWJqZWN0MSA8LSBsaXN0KGZ1bGxuYW1lID0gc3ViamVjdF9uYW1lWzFdLCAKICAgICAgICAgICAgICAgICB0ZW1wZXJhdHVyZSA9IHRlbXBlcmF0dXJlWzFdLAogICAgICAgICAgICAgICAgIGZsdV9zdGF0dXMgPSBmbHVfc3RhdHVzWzFdLAogICAgICAgICAgICAgICAgIGdlbmRlciA9IGdlbmRlclsxXSwKICAgICAgICAgICAgICAgICBibG9vZCA9IGJsb29kWzFdLAogICAgICAgICAgICAgICAgIHN5bXB0b21zID0gc3ltcHRvbXNbMV0pCmBgYAoKYGBge3J9CiMgZGlzcGxheSB0aGUgcGF0aWVudApzdWJqZWN0MQpgYGAKCgoKYGBge3J9CiMgZ2V0IGEgc2luZ2xlIGxpc3QgdmFsdWUgYnkgcG9zaXRpb24gKHJldHVybnMgYSBzdWItbGlzdCkKc3ViamVjdDFbMl0KYGBgCgpgYGB7cn0KIyBnZXQgYSBzaW5nbGUgbGlzdCB2YWx1ZSBieSBwb3NpdGlvbiAocmV0dXJucyBhIG51bWVyaWMgdmVjdG9yKQpzdWJqZWN0MVtbMl1dCmBgYAoKYGBge3J9CiMgZ2V0IGEgc2luZ2xlIGxpc3QgdmFsdWUgYnkgbmFtZQpzdWJqZWN0MSR0ZW1wZXJhdHVyZQpgYGAKCmBgYHtyfQojIGdldCBzZXZlcmFsIGxpc3QgaXRlbXMgYnkgc3BlY2lmeWluZyBhIHZlY3RvciBvZiBuYW1lcwpzdWJqZWN0MVtjKCJ0ZW1wZXJhdHVyZSIsICJmbHVfc3RhdHVzIildCmBgYAoKYGBge3J9CiMgZ2V0IHZhbHVlcyAyIGFuZCAzCnN1YmplY3QxWzI6M10KYGBgCgpgYGB7cn0KcHRfZGF0YSA8LSBkYXRhLmZyYW1lKHN1YmplY3RfbmFtZSwgdGVtcGVyYXR1cmUsIGZsdV9zdGF0dXMsIGdlbmRlciwKICAgICAgICAgICAgICAgICAgICAgIGJsb29kLCBzeW1wdG9tcywgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFKQpgYGAKCgpgYGB7cn0KIyBkaXNwbGF5IHRoZSBkYXRhIGZyYW1lCnB0X2RhdGEKYGBgCgpgYGB7cn0KIyBnZXQgYSBzaW5nbGUgY29sdW1uCnB0X2RhdGEkc3ViamVjdF9uYW1lCmBgYAoKYGBge3J9CiMgZ2V0IHNldmVyYWwgY29sdW1ucyBieSBzcGVjaWZ5aW5nIGEgdmVjdG9yIG9mIG5hbWVzCnB0X2RhdGFbYygidGVtcGVyYXR1cmUiLCAiZmx1X3N0YXR1cyIpXQpgYGAKYGBge3J9CiMgdGhpcyBpcyB0aGUgc2FtZSBhcyBhYm92ZSwgZXh0cmFjdGluZyB0ZW1wZXJhdHVyZSBhbmQgZmx1X3N0YXR1cwpwdF9kYXRhWzI6M10KYGBgCgpgYGB7cn0KIyBhY2Nlc3NpbmcgYnkgcm93IGFuZCBjb2x1bW4KcHRfZGF0YVsxLCAyXQpgYGAKCmBgYHtyfQojIGFjY2Vzc2luZyBzZXZlcmFsIHJvd3MgYW5kIHNldmVyYWwgY29sdW1ucyB1c2luZyB2ZWN0b3JzCnB0X2RhdGFbYygxLCAzKSwgYygyLCA0KV0KYGBgCgpgYGB7cn0KIyBhbGwgcm93cyBhbmQgYWxsIGNvbHVtbnMKcHRfZGF0YVsgLCBdCmBgYAoKYGBge3J9CiMgdGhlIGZvbGxvd2luZyBhcmUgZXF1aXZhbGVudApwdF9kYXRhW2MoMSwgMyksIGMoInRlbXBlcmF0dXJlIiwgImdlbmRlciIpXQpgYGAKCmBgYHtyfQojIGNyZWF0aW5nIGEgQ2Vsc2l1cyB0ZW1wZXJhdHVyZSBjb2x1bW4KcHRfZGF0YSR0ZW1wX2MgPC0gKHB0X2RhdGEkdGVtcGVyYXR1cmUgLSAzMikgKiAoNSAvIDkpCmBgYAoKCmBgYHtyfQojIGNvbXBhcmluZyBiZWZvcmUgYW5kIGFmdGVyCnB0X2RhdGFbYygidGVtcGVyYXR1cmUiLCAidGVtcF9jIildCmBgYAoKYGBge3J9CiMgY3JlYXRlIGEgMngyIG1hdHJpeAptIDwtIG1hdHJpeChjKDEsIDIsIDMsIDQpLCBucm93ID0gMikKbQpgYGAKCgoKYGBge3J9CiMgZXF1aXZhbGVudCB0byB0aGUgYWJvdmUKbSA8LSBtYXRyaXgoYygxLCAyLCAzLCA0KSwgbmNvbCA9IDIpCm0KYGBgCgoKYGBge3J9CiMgY3JlYXRlIGEgMngzIG1hdHJpeAptIDwtIG1hdHJpeChjKDEsIDIsIDMsIDQsIDUsIDYpLCBucm93ID0gMikKbQpgYGAKCmBgYHtyfQojIGNyZWF0ZSBhIDN4MiBtYXRyaXgKbSA8LSBtYXRyaXgoYygxLCAyLCAzLCA0LCA1LCA2KSwgbmNvbCA9IDIpCm0KYGBgCgoKCmBgYHtyfQojIGV4dHJhY3QgdmFsdWVzIGZyb20gbWF0cml4ZXMKbVsxLCAxXQpgYGAKCg==