library(tidyverse)
library(purrrfect)
(exponential_consec_stats_sim <- parameters(~i, ~n, ~lambda,
c(3,5,9), c(10,15,20), c(0.05, 0.1)
)
%>% add_trials(10000)
%>% mutate(y_sample = pmap(list(n, lambda), .f = \(n,l) rexp(n, rate = l)))
%>% mutate(y_sorted = map(y_sample, sort))
%>% mutate(yi = pmap_dbl(list(i, y_sorted), .f = \(i,y) pluck(y, i)),
y_i_minus_1 = pmap_dbl(list(i, y_sorted), .f = \(i,y) pluck(y, i-1)),
t = yi - y_i_minus_1)
%>% mutate(f_t = dexp(t, lambda*(n-i+1)))
)
# A tibble: 180,000 × 10
i n lambda .trial y_sample y_sorted yi y_i_minus_1 t f_t
<dbl> <dbl> <dbl> <dbl> <list> <list> <dbl> <dbl> <dbl> <dbl>
1 3 10 0.05 1 <dbl [10]> <dbl> 4.76 2.71 2.05 0.176
2 3 10 0.05 2 <dbl [10]> <dbl> 2.60 2.25 0.348 0.348
3 3 10 0.05 3 <dbl [10]> <dbl> 2.31 1.84 0.469 0.332
4 3 10 0.05 4 <dbl [10]> <dbl> 4.15 1.74 2.41 0.152
5 3 10 0.05 5 <dbl [10]> <dbl> 4.44 1.89 2.55 0.144
6 3 10 0.05 6 <dbl [10]> <dbl> 2.44 1.45 0.994 0.269
7 3 10 0.05 7 <dbl [10]> <dbl> 12.9 12.8 0.152 0.376
8 3 10 0.05 8 <dbl [10]> <dbl> 3.17 0.312 2.86 0.127
9 3 10 0.05 9 <dbl [10]> <dbl> 8.48 1.47 7.01 0.0243
10 3 10 0.05 10 <dbl [10]> <dbl> 7.59 3.23 4.36 0.0699
# ℹ 179,990 more rows