\[E = z \cdot \sqrt{\frac{p(1-p)}{n}}\]
n = 2000 # amostra por teste
p = 0.5 # proporção real na população
r = 10000 # testes
margem = 0.02 # erro
set.seed(579)
s = rbinom(r, size = n, prob = p)
pesquisas = s / n
diferencas = abs(pesquisas - p)
dentrodoesperado = sum(diferencas <= margem) / r * 100
foradoesperado = sum(diferencas > margem) / r * 100
## pesquisas dentro esperado: 92.68 %
## pesquisas fora esperado: 7.32 %
| X Y | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total (X) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1/36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1/36 |
| 2 | 0 | 2/36 | 1/36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3/36 |
| 3 | 0 | 0 | 2/36 | 2/36 | 1/36 | 0 | 0 | 0 | 0 | 0 | 0 | 5/36 |
| 4 | 0 | 0 | 0 | 2/36 | 2/36 | 2/36 | 1/36 | 0 | 0 | 0 | 0 | 7/36 |
| 5 | 0 | 0 | 0 | 0 | 2/36 | 2/36 | 2/36 | 2/36 | 1/36 | 0 | 0 | 9/36 |
| 6 | 0 | 0 | 0 | 0 | 0 | 2/36 | 2/36 | 2/36 | 2/36 | 2/36 | 1/36 | 11/36 |
| Total (Y) | 1/36 | 2/36 | 3/36 | 4/36 | 5/36 | 6/36 | 5/36 | 4/36 | 3/36 | 2/36 | 1/36 | 1 |
r = 10000
set.seed(579)
d1 = sample(1:6, size = r, replace = TRUE)
d2 = sample(1:6, size = r, replace = TRUE)
X = pmax(d1, d2)
Y = d1 + d2
tabela_freq = table(X, Y)
freq_relativas = prop.table(tabela_freq)
round(freq_relativas, 4)
## Y
## X 2 3 4 5 6 7 8 9 10 11
## 1 0.0273 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 2 0.0000 0.0608 0.0278 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 3 0.0000 0.0000 0.0567 0.0560 0.0261 0.0000 0.0000 0.0000 0.0000 0.0000
## 4 0.0000 0.0000 0.0000 0.0547 0.0524 0.0532 0.0249 0.0000 0.0000 0.0000
## 5 0.0000 0.0000 0.0000 0.0000 0.0583 0.0596 0.0556 0.0573 0.0245 0.0000
## 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0596 0.0543 0.0590 0.0526 0.0528
## Y
## X 12
## 1 0.0000
## 2 0.0000
## 3 0.0000
## 4 0.0000
## 5 0.0000
## 6 0.0265
\[\frac{1}{36}=0,0278\approx0,0268\]
\[P= 1 - \left( \frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \dots \cdot \frac{343}{365} \right)\approx0,507 \]
set.seed(579)
r = 10000 # twstes
n = 23 # nº de pessoas
sucessos = 0
for (i in 1:r) {
grupo = sample(1:365, size = n, replace = TRUE)
if (any(duplicated(grupo))) {
sucessos = sucessos + 1
}
}
prob = sucessos / r
## Testes com pelo menos uma coincidência: 5032
## Probabilidade estimada: 50.32 %
## Probabilidade teórica: 50.73 %
set.seed(579)
r = 10000 # twstes
n = 57 # nº de pessoas
sucessos = 0
for (i in 1:r) {
grupo = sample(1:365, size = n, replace = TRUE)
if (any(duplicated(grupo))) {
sucessos = sucessos + 1
}
}
prob = sucessos / r
## Testes com pelo menos uma coincidência: 9893
## Probabilidade estimada: 98.93 %
## Probabilidade teórica: 99.01 %
r = 10000 # testes
fportas = function(trocar = TRUE) {
portas = 1:3
carro = sample(portas, 1)
portaescolhida = sample(portas, 1)
portasfaltando = portas[portas != carro & portas != portaescolhida]
if(length(portasfaltando) > 1) {
portan = sample(portasfaltando, 1)
} else {
portan = portasfaltando
}
if(trocar) {
nporta = portas[portas != portaescolhida & portas != portan]
} else {
nporta = portaescolhida
}
return(nporta == carro)
}
set.seed(579)
vitoriast = replicate(r, fportas(trocar = TRUE))
vitoriasm = replicate(r, fportas(trocar = FALSE))
taxa_trocar = mean(vitoriast)
taxa_manter = mean(vitoriasm)
## 66.71 %
## 33.68 %
# parâmetros
n = 10
p = 0.3
r = 10000
set.seed(579)
simulacoes = replicate(r, sum(rbinom(n, 1, p)))
freqrelativas = table(factor(simulacoes, levels = 0:n)) / r
prob_teorica = dbinom(0:n, size = n, prob = p)
## 0.0292 0.118 0.2326 0.2589 0.2064 0.1047 0.0375 0.0103 0.0021 3e-04 0
## 0.02824752 0.1210608 0.2334744 0.2668279 0.2001209 0.1029193 0.03675691 0.009001692 0.001446701 0.000137781 5.9049e-06
# gráfico
coords = barplot(freqrelativas,
main = "Frequência Simulada x Distribuição Binomial",
xlab = "Número de Sucessos",
ylab = "Probabilidade",
col = "blue",
ylim = c(0, max(prob_teorica) + 0.05))
points(coords, prob_teorica, col = "red", pch = 16, cex = 1.5)
lines(coords, prob_teorica, col = "red", lwd = 2)
legend("topright", legend = c("Simulado (Soma de Bernoullis)", "Binomial"),
fill = c("blue", NA), pch = c(NA, 16), col = c(NA, "red"), bty = "n")
# parâmetros
lambda1 = 1
lambda2 = 2
lambdasoma = lambda1 + lambda2
r = 10000
set.seed(579)
x1 = rpois(r, lambda1)
x2 = rpois(r, lambda2)
soma = x1 + x2
valormax= 15
freq_relativa = table(factor(soma, levels = 0:valormax)) / r
prob_pois = dpois(0:valormax, lambda = lambdasoma)
## 0.0496 0.1519 0.2195 0.2144 0.1766 0.1057 0.0486 0.0225 0.008 0.0018 9e-04 5e-04 0 0 0 0
## 0.04978707 0.1493612 0.2240418 0.2240418 0.1680314 0.1008188 0.05040941 0.02160403 0.008101512 0.002700504 0.0008101512 0.0002209503 5.523758e-05 1.274713e-05 2.731529e-06 5.463057e-07
#gráfico
coords <- barplot(freq_relativa,
main = expression(paste("Simulação da Soma: ", X[1] + X[2])),
xlab = "Valor da Soma",
ylab = "Probabilidade",
col = "blue",
ylim = c(0, max(prob_teorica) + 0.05))
points(coords, prob_pois, col = "red", pch = 18, cex = 1.5)
lines(coords, prob_pois, col = "red", lwd = 2)
legend("topright", legend = c("Soma Simulada", "Poisson (3)"),
fill = c("blue", NA), pch = c(NA, 18), col = c(NA, "red"), bty = "n")
\[M_X(t) = e^{\lambda(e^t - 1)}\]
\[M_{X_1+X_2}(t) = e^{\lambda_1(e^t - 1)} \cdot e^{\lambda_2(e^t - 1)} = e^{(\lambda_1 + \lambda_2)(e^t - 1)}\]
\[Z = X + Y \sim N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y) \rightarrow \mathbf{Z \sim N(0, 2)}\]
\[V = X - Y \sim N(\mu_X - \mu_Y, \sigma^2_X + \sigma^2_Y) \rightarrow \mathbf{V \sim N(0, 2)}\]
r = 10000
set.seed(579)
x = rnorm(r, mean = 0, sd = 1)
y = rnorm(r, mean = 0, sd = 1)
z = x + y
v = x - y
# Z = X + Y
hist(z, breaks = 50, probability = TRUE, col = "blue",
main = "Z = X + Y", xlab = "Valores de Z")
curve(dnorm(x, mean = 0, sd = sqrt(2)), add = TRUE, col = "red", lwd = 2)
legend("topright", legend = c("X + Y", "N(o,2)"),
fill = c("blue", NA), pch = c(NA, 18), col = c(NA, "red"), bty = "n")
# V = X - Y
hist(v, breaks = 50, probability = TRUE, col = "blue",
main = "V = X - Y", xlab = "Valores de V")
curve(dnorm(x, mean = 0, sd = sqrt(2)), add = TRUE, col = "red", lwd = 2)
legend("topright", legend = c("X - Y", "N(o,2)"),
fill = c("blue", NA), pch = c(NA, 18), col = c(NA, "red"), bty = "n")
\[P(X > Y) = \int_{0}^{\infty} \int_{0}^{x} e^{-(x+y)} \, dy \, dx\]
\[\int_{0}^{x} e^{-x} e^{-y} \, dy = e^{-x} \int_{0}^{x} e^{-y} \, dy\]
\[e^{-x} \left[ -e^{-y} \right]_{0}^{x} = e^{-x} (-e^{-x} - (-e^{0})) = e^{-x}(1 - e^{-x})\] \[= e^{-x} - e^{-2x}\]
\[\int_{0}^{\infty} (e^{-x} - e^{-2x}) \, dx\]
\[\left[ -e^{-x} - \left( -\frac{1}{2}e^{-2x} \right) \right]_{0}^{\infty} = \left[ -e^{-x} + \frac{1}{2}e^{-2x} \right]_{0}^{\infty}\]
\[(-e^{0} + \frac{1}{2}e^{0}) = -1 + \frac{1}{2} = -\frac{1}{2}\]
\[0 - \left( -\frac{1}{2} \right) = \frac{1}{2}\]
\[P(X>Y)=\frac{1}{2}\]
r = 100000
set.seed(579)
x = rexp(r, rate = 1)
y = rexp(r, rate = 1)
xmaior = x > y
cat(mean(xmaior))
## 0.50136
library(moments)
set.seed(579)
r = 10000
sorteios = t(replicate(r, sort(sample(1:60, 6))))
resultados = data.frame(
Ordem = paste0("X(", 1:6, ")"),
Media = apply(sorteios, 2, mean),
DP = apply(sorteios, 2, sd),
Assimetria = apply(sorteios, 2, skewness),
Curtose = apply(sorteios, 2, kurtosis)
)
## Media DP Assimetria Curtose
## 1 8.735 7.105 1.292 4.693
## 2 17.458 9.149 0.602 2.902
## 3 26.109 10.037 0.182 2.485
## 4 34.773 10.032 -0.176 2.463
## 5 43.568 9.122 -0.621 2.949
## 6 52.183 7.089 -1.267 4.573
library(moments)
library(readxl)
ms = "C:/Users/PC/Downloads/Mega-Sena.xlsx"
dados = read_excel(ms)
dn = as.matrix(dados[, 3:8])
dn = apply(dn, 2, as.numeric)
dados2 = t(apply(dn, 1, sort))
resultados2 = data.frame(
Ordem = paste0("X(", 1:6, ")"),
Media = apply(dados2, 2, mean, na.rm = TRUE),
DP = apply(dados2, 2, sd, na.rm = TRUE),
Assimetria = apply(dados2, 2, skewness, na.rm = TRUE),
Curtose = apply(dados2, 2, kurtosis, na.rm = TRUE)
)
## Ordem Media DP Assimetria Curtose
## Bola1 X(1) 8.591 6.952 1.3598 5.128
## Bola2 X(2) 17.398 9.132 0.6011 2.891
## Bola3 X(3) 26.354 10.007 0.1436 2.435
## Bola4 X(4) 35.102 9.828 -0.1880 2.540
## Bola5 X(5) 43.598 9.003 -0.5530 2.842
## Bola6 X(6) 52.218 6.946 -1.2222 4.347