\[f_T(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}, -\infty < t < \infty\]
\[T = \frac{Z}{\sqrt{W/\nu}} \sim t_\nu\]
Since \(Z\) and \(W\) are independent:
\[ f_{Z,W}(z,w) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \cdot \frac{1}{2^{\nu/2}\Gamma(\nu/2)} w^{\nu/2-1} e^{-w/2}, \quad w>0, z \in \mathbb{R} \]
\[Z = T\sqrt{\frac{U}{\nu}}\]
\[W = U\]
\[J = \begin{bmatrix} \sqrt{\frac{U}{\nu}}& 0\\ \frac{T}{2\sqrt{U\nu}} & 1 \end{bmatrix} \Rightarrow |det(J)| = \sqrt{\frac{U}{\nu}}\]
\[f_{T,U}(t,u) = f_{Z,W}\left(t\sqrt{\frac{u}{\nu}},u\right)\cdot \sqrt{\frac{u}{\nu}}\]
\[f_{T,U}(t,u) = \frac{1}{\sqrt{2\pi}} \exp\!\left(-\frac{t^2u}{2\nu}\right) \cdot \frac{1}{2^{\nu/2}\Gamma(\nu/2)} u^{\nu/2-1} e^{-u/2} \cdot \sqrt{\frac{u}{\nu}}\] \[= \frac{1}{\sqrt{2\pi\nu}\,2^{\nu/2}\Gamma(\nu/2)} u^{(\nu+1)/2-1} \exp\!\left(-\frac{u}{2}\left(1+\frac{t^2}{\nu}\right)\right), t \in \mathbb{R}, u > 0\]
\[f_T(t) = \int_{0}^{\infty}\frac{1}{\sqrt{2\pi\nu}\,2^{\nu/2}\Gamma(\nu/2)} u^{(\nu+1)/2-1} \exp\!\left(-\frac{u}{2}\left(1+\frac{t^2}{\nu}\right)\right)\, du= \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}\]
Proof: practice!
\[\frac{\bar Y - \mu}{S/\sqrt{n}} \sim t_{n-1}\]
Outline of proof (rest left for practice):
\[\frac{\bar Y - \mu}{S/\sqrt{n}} = \frac{\frac{\bar Y - \mu}{\sigma/\sqrt{n}}}{S/\sigma}\]
Rdt(x, df): evaluate \(f_T(x)\)pt(x, df): evaluate cumulative probabilitiesqt(x, df): find quantilesqt(0.025, n-1) and qt(0.975, n-1)):\[\small 0.95 = P\left(q_{0.025} \le \frac{\bar Y-\mu}{S/ \sqrt{n}} \le q_{0.975} \right) = P\left(\bar Y - q_{0.025}\cdot \frac{S}{\sqrt{n}} \ge \mu \ge \bar Y - q_{0.975}\cdot \frac{S}{\sqrt{n}} \right)\]
Since the t-distribution is symmetric, \(q_{0.025} = -q_{0.975}\) so endpoints often expressed as:
\[\small \bar Y \pm q_{0.975}\cdot S/\sqrt{n}\]
\[H_0: \mu_d =0\] \[H_a: \mu_d \ne 0\]
\[ \frac{\bar Y_d-0}{S/ \sqrt{n}}\sim t_{n-1}\]