#Libraries
Line plots are charts that are designed to show us the change of a variable over a set interval across multiple experiments and create a line of best fit that attempts to show us how the average across each time interval changes.
mean_df_big <- df_big %>%
filter(rep %in% c("rep1", "rep2")) %>%
group_by(ver_pos, conditions, hour) %>%
mutate(
mean = mean(abs, na.rm =TRUE),
sd = sd(abs, na.rm = TRUE)
)
mean_df_big %>%
filter(ver_pos == "2401A10") %>%
filter(conditions == "LS37") %>%
ggplot(aes(x=hour,y=mean))+
geom_point(aes(color = conditions), shape = 15, fill = "#F8766D")+
geom_errorbar(aes(x = as.numeric(hour),
ymin = as.numeric(mean) - as.numeric(sd),
ymax = as.numeric(mean) + as.numeric(sd)),
alpha = 0.5)+
geom_smooth(method = "lm", se = FALSE, aes(color = conditions))+
theme_bw()
## `geom_smooth()` using formula = 'y ~ x'
# scale_y_continuous(transform = "log10")
mean_df_big %>%
filter(ver_pos == "2401A10") %>%
ggplot(aes(x=hour,y=mean))+
geom_point(aes(color = conditions), shape = 15)+
geom_errorbar(aes(x = as.numeric(hour),
ymin = as.numeric(mean) - as.numeric(sd),
ymax = as.numeric(mean) + as.numeric(sd)),
alpha = 0.5)+
geom_smooth(method = "lm", se = FALSE, aes(color = conditions))+
theme_bw()
## `geom_smooth()` using formula = 'y ~ x'