My name is Mehak Tiku, and I am 23 years old. I am originally from New Delhi, India. I am a big foodie who loves exploring new places and trying new food. I am also an adventure seeker and have a passion for dancing.
I am new to R, but I have acquired basic knowledge through my coursework.
# Import blood transfusion data
df_blood <- readr::read_csv("blood_transfusion.csv")
## Rows: 748 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Class
## dbl (4): Recency, Frequency, Monetary, Time
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Check for missing values
sum(is.na(df_blood))
## [1] 0
# Dimensions of the data
dim(df_blood)
## [1] 748 5
# First 10 rows
head(df_blood, 10)
## # A tibble: 10 × 5
## Recency Frequency Monetary Time Class
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 2 50 12500 98 donated
## 2 0 13 3250 28 donated
## 3 1 16 4000 35 donated
## 4 2 20 5000 45 donated
## 5 1 24 6000 77 not donated
## 6 4 4 1000 4 not donated
## 7 2 7 1750 14 donated
## 8 1 12 3000 35 not donated
## 9 2 9 2250 22 donated
## 10 5 46 11500 98 donated
# Last 10 rows
tail(df_blood, 10)
## # A tibble: 10 × 5
## Recency Frequency Monetary Time Class
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 23 1 250 23 not donated
## 2 23 4 1000 52 not donated
## 3 23 1 250 23 not donated
## 4 23 7 1750 88 not donated
## 5 16 3 750 86 not donated
## 6 23 2 500 38 not donated
## 7 21 2 500 52 not donated
## 8 23 3 750 62 not donated
## 9 39 1 250 39 not donated
## 10 72 1 250 72 not donated
# 100th row, Monetary column
df_blood[100, "Monetary"]
## # A tibble: 1 × 1
## Monetary
## <dbl>
## 1 1750
# Mean of Monetary column
mean(df_blood[["Monetary"]])
## [1] 1378.676
# Subset Monetary > mean
above_avg <- df_blood[["Monetary"]] > mean(df_blood[["Monetary"]])
nrow(df_blood[above_avg, ])
## [1] 267
# Import Police Data
df_police <- readr::read_csv("PDI__Police_Data_Initiative__Crime_Incidents.csv")
## Rows: 15155 Columns: 40
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (34): INSTANCEID, INCIDENT_NO, DATE_REPORTED, DATE_FROM, DATE_TO, CLSD, ...
## dbl (6): UCR, LONGITUDE_X, LATITUDE_X, TOTALNUMBERVICTIMS, TOTALSUSPECTS, ZIP
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Dimensions
dim(df_police)
## [1] 15155 40
# Missing values (total and per column)
sum(is.na(df_police))
## [1] 95592
colSums(is.na(df_police))
## INSTANCEID INCIDENT_NO
## 0 0
## DATE_REPORTED DATE_FROM
## 0 2
## DATE_TO CLSD
## 9 545
## UCR DST
## 10 0
## BEAT OFFENSE
## 28 10
## LOCATION THEFT_CODE
## 2 10167
## FLOOR SIDE
## 14127 14120
## OPENING HATE_BIAS
## 14508 0
## DAYOFWEEK RPT_AREA
## 423 239
## CPD_NEIGHBORHOOD WEAPONS
## 249 5
## DATE_OF_CLEARANCE HOUR_FROM
## 2613 2
## HOUR_TO ADDRESS_X
## 9 148
## LONGITUDE_X LATITUDE_X
## 1714 1714
## VICTIM_AGE VICTIM_RACE
## 0 2192
## VICTIM_ETHNICITY VICTIM_GENDER
## 2192 2192
## SUSPECT_AGE SUSPECT_RACE
## 0 7082
## SUSPECT_ETHNICITY SUSPECT_GENDER
## 7082 7082
## TOTALNUMBERVICTIMS TOTALSUSPECTS
## 33 7082
## UCR_GROUP ZIP
## 10 1
## COMMUNITY_COUNCIL_NEIGHBORHOOD SNA_NEIGHBORHOOD
## 0 0
# Range of dates reported
range(df_police[["DATE_REPORTED"]])
## [1] "01/01/2022 01:08:00 AM" "06/26/2022 12:50:00 AM"
# Most common suspect age
table(df_police[["SUSPECT_AGE"]])
##
## 18-25 26-30 31-40 41-50 51-60 61-70 OVER 70 UNDER 18
## 1778 1126 1525 659 298 121 16 629
## UNKNOWN
## 9003
# Incidents per zip code (sorted)
sort(table(df_police[["ZIP"]]), decreasing = TRUE)
##
## 45202 45205 45211 45238 45229 45219 45225 45214 45237 45223 45206 45220 45232
## 2049 1110 1094 956 913 863 811 774 699 653 616 477 477
## 45224 45209 45208 45204 45216 45227 45207 45203 45230 45213 45239 45226 45217
## 429 380 359 348 302 286 245 226 214 190 169 112 100
## 45221 45233 45212 45215 45231 45228 42502 45236 45244 45248 4523 5239
## 90 77 61 47 7 5 3 3 3 3 2 1
# Proportion of incidents by day of the week
table(df_police[["DAYOFWEEK"]]) / sum(table(df_police[["DAYOFWEEK"]]))
##
## FRIDAY MONDAY SATURDAY SUNDAY THURSDAY TUESDAY WEDNESDAY
## 0.1369807 0.1438365 0.1542221 0.1448547 0.1363019 0.1432935 0.1405105