A. What is the length of scores?
## [1] 7
B. Extract the 2nd, 4th, and 7th elements.
## [1] 85 66 70
C. Find all values in scores that are greater than 80.
## [1] 85 90 88 91
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 352.74900 88.7196 110.62568 455.74658 228.27690 73.18932 106.32917
## [2,] 246.35939 137.0152 128.46820 70.35103 132.47600 44.33329 71.85511
## [3,] 20.08998 344.6132 469.19447 220.09616 60.02196 181.01643 233.47540
## [4,] 349.16378 415.0871 25.31133 74.12617 267.21676 112.88036 374.95979
## [5,] 50.48898 267.4727 94.18515 338.07967 53.11656 264.55122 110.34175
## [6,] 379.83312 455.4018 55.82743 214.69175 225.57285 234.04814 432.21653
## [,8] [,9] [,10]
## [1,] 185.54739 81.84190 387.11798
## [2,] 50.35562 25.02829 303.17765
## [3,] 35.20263 214.99250 57.27482
## [4,] 37.42097 345.39840 246.89996
## [5,] 101.68860 199.54120 425.52651
## [6,] 79.52481 297.12392 403.52598
A. Extract columns 2 and 5 as a new matrix.
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 88.7196 137.0152 344.61321 415.0871 267.47266 455.4018
## [2,] 228.2769 132.4760 60.02196 267.2168 53.11656 225.5729
B. Add up columns 1 and 2.
## [1] 586.4877
C. Identify all rows where the value in column 3 is greater than 250.
## [1] 88.7196 137.0152 344.6132 415.0871 267.4727 455.4018
Age<-c(25,31,23,52,76,49,26)
Height<-c(177,163,190,179,163,183,164)
Weight<-c(57,69,83,75,70,83,53)
df1<-data.frame(Age, Height, Weight)
rownames(df1)<- c("Alex","Lilly","Mark","Oliver","Martha","Lucas","Caroline")
df1## Age Height Weight
## Alex 25 177 57
## Lilly 31 163 69
## Mark 23 190 83
## Oliver 52 179 75
## Martha 76 163 70
## Lucas 49 183 83
## Caroline 26 164 53
Working<-c("Yes","No","No","Yes","Yes","No","Yes")
df2<-data.frame(Working)
rownames(df2)<-c("Alex","Lilly","Mark","Oliver","Martha","Lucas","Caroline")
df2## Working
## Alex Yes
## Lilly No
## Mark No
## Oliver Yes
## Martha Yes
## Lucas No
## Caroline Yes
A. Combine the two data frames column-wise.
df3<-data.frame(Age,Height,Weight,Working)
rownames(df3)<-c("Alex","Lilly","Mark","Oliver","Martha","Lucas","Caroline")
df3## Age Height Weight Working
## Alex 25 177 57 Yes
## Lilly 31 163 69 No
## Mark 23 190 83 No
## Oliver 52 179 75 Yes
## Martha 76 163 70 Yes
## Lucas 49 183 83 No
## Caroline 26 164 53 Yes
B. What class of data is in each column of the combined data frame?
## [1] "numeric" "numeric" "numeric" "character"
C. Replace row names with the letters from A to G.
## Age Height Weight Working
## A 25 177 57 Yes
## B 31 163 69 No
## C 23 190 83 No
## D 52 179 75 Yes
## E 76 163 70 Yes
## F 49 183 83 No
## G 26 164 53 Yes