kth_st <- \(n,k) {
ns <-sort(n)
kth = ns[k]
return(kth)
}
(p7df <- parameters(~n,c(4,8,12,16))
%>%add_trials(10000)
%>%mutate(Y = pmap(list(n),\(x) runif(x,0,1)),Y1 = map_dbl(Y,\(x) kth_st(x,1)),Y3 = map_dbl(Y,\(x) kth_st(x,3)),Yn = pmap_dbl(list(Y,n),\(x,y) kth_st(x,y)),f1=pmap_dbl(list(Y1,n),\(y,x) dbeta(y,1,x-1+1)),f3=pmap_dbl(list(Y3,n),\(y,x) dbeta(y,3,x-3+1)),fn=pmap_dbl(list(Yn,n),\(y,x) dbeta(y,x,x-x+1)))
)
# A tibble: 40,000 × 9
n .trial Y Y1 Y3 Yn f1 f3 fn
<dbl> <dbl> <list> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 4 1 <dbl [4]> 0.0974 0.666 0.973 2.94 1.78 3.68
2 4 2 <dbl [4]> 0.0170 0.619 1.000 3.80 1.75 3.99
3 4 3 <dbl [4]> 0.362 0.883 0.918 1.04 1.10 3.10
4 4 4 <dbl [4]> 0.153 0.486 0.654 2.43 1.46 1.12
5 4 5 <dbl [4]> 0.253 0.885 0.927 1.67 1.08 3.18
6 4 6 <dbl [4]> 0.220 0.627 0.944 1.90 1.76 3.36
7 4 7 <dbl [4]> 0.693 0.926 0.945 0.115 0.766 3.37
8 4 8 <dbl [4]> 0.223 0.696 0.922 1.88 1.77 3.13
9 4 9 <dbl [4]> 0.133 0.504 0.726 2.60 1.51 1.53
10 4 10 <dbl [4]> 0.230 0.325 0.503 1.83 0.854 0.511
# ℹ 39,990 more rows