Data analysis all studies

Author

Richard Bergs, Julius Fenn

1 Notes

2 global variables

Define your global variables (e.g., to reduce run time):

3 functions

########################################
# xx
########################################
### argss:
# xx

4 load packages

### load packages (also packages loaded, which are not needed for data preperation)
require(pacman)
p_load('tidyverse', 'jsonlite',
       'stargazer',  'DT', 'psych',
       'writexl', 'associatoR',
       'ggstatsplot')
# devtools::install_github("samuelae/associatoR")

5 load prepared data

setwd("outputs/questionnaire")

ques_study <- readRDS(file = paste0("ques_study", ".rds"))
setwd("outputs/associations")

ass_study <- readRDS(file = paste0("ass_study", ".rds"))

6 Check and summarize scales

6.1 compute mean scores

ques_study$mean_AIAS <- rowMeans(x = ques_study[, str_subset(string = colnames(ques_study), pattern = "^AIAS")], na.rm = FALSE) # no missing
ques_study$mean_PTTA <- rowMeans(x = ques_study[, str_subset(string = colnames(ques_study), pattern = "^PTTA")], na.rm = FALSE) # no missing
hist(ques_study$mean_AIAS)

hist(ques_study$mean_PTTA)

cor(ques_study$mean_AIAS, ques_study$mean_PTTA)
[1] 0.6921071

7 Analyze data

ggstatsplot::ggbetweenstats(data = ques_study, x = study_condition, y = mean_AIAS, type = "parametric")

ggstatsplot::ggbetweenstats(data = ques_study, x = study_condition, y = mean_PTTA, type = "parametric")

library(afex)
Lade nötiges Paket: lme4
Lade nötiges Paket: Matrix

Attache Paket: 'Matrix'
Die folgenden Objekte sind maskiert von 'package:tidyr':

    expand, pack, unpack
************
Welcome to afex. For support visit: http://afex.singmann.science/
- Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
- Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
- 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
- Get and set global package options with: afex_options()
- Set sum-to-zero contrasts globally: set_sum_contrasts()
- For example analyses see: browseVignettes("afex")
************

Attache Paket: 'afex'
Das folgende Objekt ist maskiert 'package:lme4':

    lmer
# Run the Between-Subjects ANOVA
model_anova <- aov_ez(
  id = "PROLIFIC_PID",      # Replace with your subject ID column name
  dv = "mean_PTTA",           # Your Dependent Variable
  data = ques_study, 
  between = "study_condition" # Your Independent Variable
)
Contrasts set to contr.sum for the following variables: study_condition
# Print the ANOVA table
print(model_anova)
Anova Table (Type 3 tests)

Response: mean_PTTA
           Effect     df  MSE      F  ges p.value
1 study_condition 6, 507 0.52 1.80 + .021    .097
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
library(emmeans)
Welcome to emmeans.
Caution: You lose important information if you filter this package's results.
See '? untidy'
# Get the marginal means
ls_means <- emmeans(model_anova, specs = "study_condition")

# Perform pairwise comparisons
post_hocs <- pairs(ls_means, adjust = "tukey")

# View results
print(post_hocs)
 contrast                                    estimate    SE  df t.ratio p.value
 AutonomousWeapons - CourtDecision           -0.15221 0.119 507  -1.280  0.8609
 AutonomousWeapons - CriticalInfrastructure  -0.13699 0.121 507  -1.136  0.9168
 AutonomousWeapons - Diagnostic              -0.25681 0.108 507  -2.384  0.2073
 AutonomousWeapons - Grading                 -0.12774 0.114 507  -1.116  0.9232
 AutonomousWeapons - Migration               -0.18371 0.109 507  -1.692  0.6220
 AutonomousWeapons - PersonnelSelection      -0.37311 0.126 507  -2.961  0.0499
 CourtDecision - CriticalInfrastructure       0.01521 0.130 507   0.117  1.0000
 CourtDecision - Diagnostic                  -0.10460 0.118 507  -0.886  0.9746
 CourtDecision - Grading                      0.02447 0.124 507   0.197  1.0000
 CourtDecision - Migration                   -0.03151 0.119 507  -0.265  1.0000
 CourtDecision - PersonnelSelection          -0.22090 0.135 507  -1.637  0.6586
 CriticalInfrastructure - Diagnostic         -0.11981 0.120 507  -1.000  0.9539
 CriticalInfrastructure - Grading             0.00926 0.126 507   0.074  1.0000
 CriticalInfrastructure - Migration          -0.04672 0.121 507  -0.387  0.9997
 CriticalInfrastructure - PersonnelSelection -0.23611 0.136 507  -1.730  0.5962
 Diagnostic - Grading                         0.12907 0.114 507   1.136  0.9168
 Diagnostic - Migration                       0.07309 0.108 507   0.679  0.9937
 Diagnostic - PersonnelSelection             -0.11630 0.125 507  -0.929  0.9679
 Grading - Migration                         -0.05598 0.114 507  -0.489  0.9990
 Grading - PersonnelSelection                -0.24537 0.131 507  -1.872  0.5003
 Migration - PersonnelSelection              -0.18939 0.126 507  -1.503  0.7430

P value adjustment: tukey method for comparing a family of 7 estimates