library('sm')
Package 'sm', version 2.2-6.0: type help(sm) for summary information
library(MASS)
Attachement du package : 'MASS'
L'objet suivant est masqué depuis 'package:sm':
muscle
data(galaxies)
?galaxies
hist(galaxies)
hist(galaxies,freq=F)
hist(galaxies,freq=F,nclass=20)
hist(galaxies,breaks=quantile(galaxies,seq(0,1,len=20)))
PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is installed, please make sure the phantomjs executable can be found via the PATH variable.
data(faithful)
attach(faithful)
?faithful
hist(waiting,freq=F)
hist(waiting,freq=F,nclass=20)
hist(waiting,breaks=quantile(waiting,seq(0,1,len=20)))
hist(eruptions,freq=F)
hist(eruptions,freq=F,nclass=20)
hist(eruptions,breaks=quantile(eruptions,seq(0,1,len=30)))
rmixing=function(n,alpha,l0,l1,p0,p1)
# Generate data from a mixing model
{
z=rbinom(n,1,alpha)
f1=eval(parse(text=paste('r',l1,'(',paste(c(n,p1),collapse=','),')',sep='')))
f0=eval(parse(text=paste('r',l0,'(',paste(c(n,p0),collapse=','),')',sep='')))
x=z*f1+(1-z)*f0
return(x=x)
}
dmixing=function(t,alpha,l0,l1,p0,p1)
# draw the density of the mixing model
{
res=alpha*eval(parse(text=paste('d',l1,'(t,',paste(p1,collapse=','),')',sep='')))+(1-alpha)*eval(parse(text=paste('d',l0,'(t,',paste(p0,collapse=','),')',sep='')))
}
#Example
n=300
alpha=0.3
l0='norm'
p0=c(8,1)
l1='norm'
p1=c(0,2)
s=seq(-10,10,0.001)
x=rmixing(n,alpha,l0,l1,p0,p1)
#### histogram
par(mfrow=c(1,3))
hist(x,freq=F,ylim=c(0,0.4))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
hist(x,freq=F,ylim=c(0,0.4),nclass=20)
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
hist(x,breaks=quantile(x,seq(0,1,len=20)),ylim=c(0,0.4))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
par(mfrow=c(2,3))
plot(density(x,bw=0.001,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=0.01,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=0.1,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=10,kernel='rectangular'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='rectangular',bw=100),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
par(mfrow=c(1,1))
hist(x,freq=F,ylim=c(0,0.4),xlim=c(-7,12))
lines(density(x,kernel='rectangular'),col='blue')
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
# Galaxies
hist(galaxies,freq=F,ylim=range(density(galaxies,kernel='rectangular')$y))
lines(density(galaxies,kernel='rectangular'),col='blue')
# Faithful
hist(waiting,freq=F,ylim=range(density(waiting,kernel='rectangular')$y))
lines(density(waiting,kernel='rectangular'),col='blue')
hist(eruptions,freq=F,ylim=range(density(eruptions,kernel='rectangular')$y))
lines(density(eruptions,kernel='rectangular'),col='blue')
par(mfrow=c(2,3))
plot(density(x,bw=0.001,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=0.01,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=0.1,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=10,kernel='g'),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='g',bw=100),ylim=c(0,0.4),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
par(mfrow=c(1,1))
hist(x,freq=F,ylim=c(0,0.4),xlim=c(-7,12))
lines(density(x,kernel='g'),col='blue')
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
par(mfrow=c(2,3))
plot(density(x,bw=1,kernel='r'),main='Uniform',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=1,kernel='g'),main='Gaussian',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=1,kernel='e'),main='Epanechnikov',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=1,kernel='triangular'),main='Triangular',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,bw=1,kernel='b'),main='Biweight',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
plot(density(x,kernel='cosine',bw=1),main='Cosine',ylim=c(0,0.3),xlim=c(-7,12))
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
######## Quadratic loss
# number of simulations
J=100
hs=(1:20)/20
s=seq(-10,10,0.01)
h0=5
s0=1001
QUAD_LOSS=function(s,hs,J,n,alpha,l0,l1,p0,p1,h0,s0)
{
ls= length(s)
lh=length(hs)
EST=array(NA,c(J,ls,lh))
for (j in 1:J)
{
x=rmixing(n,alpha,l0,l1,p0,p1)
for (h in 1:lh)
{
EST[j,,h]=sm.density(x,h=hs[h],display='none',ylim=c(0,0.4),nbins=0,eval.points=s)$estimate
}
}
BIAS=apply(EST,c(2,3),mean)-dmixing(s,alpha,l0,l1,p0,p1)
VAR=apply(EST,c(2,3),var)
EQ=BIAS^2+VAR
nl=2
if (!is.null(s0)) nl=nl+1
layout(matrix(c(1:3,rep(4,3),5:(3*nl+1)),byrow=TRUE, ncol=3))
plot(hs,abs(apply(BIAS,2,mean)),type='l',ylab='|BIAS|')
plot(hs,apply(VAR,2,mean),type='l',ylab='VAR')
plot(hs,apply(EQ,2,mean),type='l',ylab='EQ')
abline(v=sm.density(x,method='normal',display="none")$h,col='blue')
abline(v=sm.density(x,method='sj',display="none")$h,col='green')
abline(v=sm.density(x,method='cv',display="none")$h,col='red')
hopt=which(apply(EQ,2,mean)==min(apply(EQ,2,mean)))
if (is.null(h0)) h0=hopt
EST2=EST[,,h0]
plot(s,EST2[1,],type='l',ylab='Estimates',main=paste('h=',hs[h0],sep=''))
for (j in 1:J) lines(s,EST2[j,])
lines(s,dmixing(s,alpha,l0,l1,p0,p1),col='red')
if (!is.null(h0))
{
plot(s,abs(BIAS[,h0]),type='l',ylab='|BIAS|',main=paste('h=',hs[h0],sep=''))
plot(s,VAR[,h0],type='l',ylab='VAR',main=paste('h=',hs[h0],sep=''))
plot(s,EQ[,h0],type='l',ylab='EQ',main=paste('h=',hs[h0],sep=''))
}
if (!is.null(s0))
{
plot(hs,abs(BIAS[s0,]),type='l',ylab='|BIAS|',main=paste('s=',s[s0],sep=''))
plot(hs,VAR[s0,],type='l',ylab='VAR',main=paste('s=',s[s0],sep=''))
plot(hs,EQ[s0,],type='l',ylab='EQ',main=paste('s=',s[s0],sep=''))
}
return(list(BIAS=BIAS,VAR=VAR,EQ=EQ,hopt=hs[hopt]))
}
RES=QUAD_LOSS(s,hs,J,n,alpha,l0,l1,p0,p1,NULL,NULL)
plot(s,dmixing(s,alpha,l0,l1,p0,p1),col='red',type='l')
lines(density(x,kernel='e'),col='blue')
lines(density(x,bw='nrd',kernel='e'))
lines(density(x,bw='SJ',kernel='e'),col='green')
lines(density(x,bw='ucv',kernel='e'),col='orange')
plot(s,dmixing(s,alpha,l0,l1,p0,p1),col='red',type='l')
sm.density(x,method='normal',kernel='e',add=T)
sm.density(x,method='sj',kernel='e',col='green',add=T)
sm.density(x,method='cv',kernel='e',col='orange',add=T)
# Galaxies
hist(galaxies,freq=F,ylim=range(density(galaxies,kernel='e',bw='ucv')$y))
lines(density(galaxies,kernel='rectangular',bw='ucv'),col='blue')
lines(density(galaxies,kernel='e',bw='ucv'),col='orange')
# Faithful
hist(waiting,freq=F,ylim=range(density(waiting,kernel='e',bw='ucv')$y))
lines(density(waiting,kernel='rectangular',bw='ucv'),col='blue')
lines(density(waiting,kernel='e',bw='ucv'),col='orange')
hist(eruptions,freq=F,ylim=range(density(eruptions,kernel='e',bw='ucv')$y))
lines(density(eruptions,kernel='rectangular',bw='ucv'),col='blue')
lines(density(eruptions,kernel='e',bw='ucv'),col='orange')
## 1.4. Applications
density.mode=function(x,a,b,M,bw='ucv',kernel='e',plot=T)
{
disc=seq(a,b,length.out=M)
dens=density(x,from=a,to=b,n=M,bw=bw,kernel=kernel)$y
mod=disc[(order(dens))[M]]
max=max(dens)
if (plot) {plot(disc,dens,type='l')}
return(list(mode=mod,max=max))
}
sm.mode=function(x,a,b,M,method='cv',plot=T)
{
disc=seq(a,b,length.out=M)
display="line"
if (plot) {display="none"}
dens=sm.density(x,eval.points=disc,method=method,nbins=0)$estimate
mod=disc[(order(dens))[M]]
max=max(dens)
return(list(mode=mod,max=max))
}
plot(s,dmixing(s,alpha,l0,l1,p0,p1),col='red',type='l')
lines(density(x,bw='ucv',kernel='e'),col='orange')
re=density.mode(x,-10,10,1000,bw='ucv',kernel='e',F)
segments(re$mod,0,re$mod,re$max)
re1=density.mode(x,-10,3,1000,bw='ucv',kernel='e',F)
segments(re1$mod,0,re1$mod,re1$max)
sm.clustering.level.sets=function(x,level=0.20,a=min(x),b=max(x),M=1000,method='sj',plot=T)
{
disc=seq(a,b,length.out=M)
n=length(x)
o=order(x)
x.and.disc=c(x,disc)
#type=
names(x.and.disc)=rep(c('data','disc'),c(n,M))
x1=sort(x.and.disc)
type1=names(x1)
n1=length(x1)
dens=sm.density(x,eval.points=x1,method=method,nbins=0)$estimate
adjusted.level=quantile(dens,level)
is.over.level=dens>adjusted.level
cluster=rep(0,M+n)
k=1
for (j in 1:(M+n))
{
if (j>1) {if (is.over.level[j]==0 & is.over.level[j-1]==1 ) {k=k+1}}
if (is.over.level[j]==1) {cluster[j]=k}
}
if (plot) {plot(x1,dens,type='l')
abline(adjusted.level,0,col='orange')}
k=max(cluster)
cluster.bounds=matrix(NA,2,k)
palette=rainbow(k)
for (j in 1:k)
{
cluster.bounds[,j]=range(x1[cluster==j])
if (plot) { segments(cluster.bounds[1,j],adjusted.level,cluster.bounds[2,j],adjusted.level,col=palette[j])}
}
cluster.on.data=(cluster[type1=='data'])
#cluster.on.data[cluster.on.data==0]=NA
return(list(cluster=cluster.on.data,cluster.bounds=cluster.bounds))
}
sm.clustering.level.sets(x,0.3)
$cluster
[1] 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 0 0 0
$cluster.bounds
[,1] [,2]
[1,] -2.384945 5.24512
[2,] 3.202891 10.52071
sm.clustering.extrema=function(x,tau=10,a=min(x),b=max(x),M=1000,method='sj',plot=T)
{
disc=seq(a,b,length.out=M)
n=length(x)
dens=sm.density(x,eval.points= disc,method=method,nbins=0)$estimate
inc=rep(0,M)
valleys=rep(0,M)
k=1
for (j in 1:M)
{
i1=max(1,j-tau)
i2=min(M,j+tau)
ratio=(dens[i2]-dens[i1])/(disc[i2]-disc[i1])
if (ratio>0) {inc[j]=1}
if (j>1) {if (inc[j]==0 & inc[j-1]==1 ) {k=k+1}}
valleys[j]=k
}
if (plot) {plot(disc,dens,type='l')}
k=max(valleys)
thresholds=rep(NA,k)
mins=rep(NA,k)
for (j in 1:k)
{
candidates=disc[valleys==j]
thresholds[j]=candidates[which.min(dens[valleys==j])]
mins[j]=min(dens[valleys==j])
#if (plot) {segments(thresholds[j],0,thresholds[j],mins[j],col='orange')}
}
n=length(x)
cluster=rep(0,n)
for (j in 1:k) {if (j==1) {cluster[x==thresholds[j]]=j}
cluster[x>thresholds[j]]=j}
cluster.disc=rep(0,M)
for (j in 1:k) {if (j==1) {cluster.disc[disc==thresholds[j]]=j}
cluster.disc[disc>thresholds[j]]=j}
K=max(cluster.disc)
palette=rainbow(K+1)
if (plot) {for (j in 0:K) {if (sum(cluster.disc==j)!=0) {
disc.j=disc[cluster.disc==j]
dens.j=dens[cluster.disc==j]
n.j=sum(cluster.disc==j)
polygon(c(disc.j[1],disc.j,disc.j[n.j]),c(0,dens.j,0),
col = palette[j+1])}
} }
#cluster.on.data[cluster.on.data==0]=NA
return(list(cluster=cluster,thresholds=thresholds))
}
sm.clustering.extrema(x,10)
$cluster
[1] 5 5 5 2 5 3 2 5 5 5 5 5 4 5 5 5 5 2 5 5 5 5 5 5 5 3 5 5 5 5 4 5 4 5 5 5 5
[38] 2 5 2 5 5 5 5 5 5 5 5 5 3 5 3 5 5 2 4 5 5 4 5 5 5 5 5 5 4 2 5 5 5 5 2 2 5
[75] 4 5 5 5 5 5 5 5 5 5 5 3 5 5 3 5 5 2 5 5 5 5 3 2 2 5 5 5 3 5 5 5 5 5 5 5 3
[112] 5 5 1 3 3 5 5 5 5 5 5 5 5 5 4 5 2 3 5 5 3 3 5 5 5 5 5 5 5 3 5 4 5 3 5 2 5
[149] 5 3 5 5 5 5 5 4 5 5 5 5 5 2 5 5 2 4 4 5 5 5 5 2 5 5 3 2 2 2 5 2 5 3 2 5 5
[186] 5 2 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 2 2 4 2 3 5 5 5 2 5 5 5 5 3 2 2 5 4 5 5
[223] 5 5 5 5 5 5 5 5 4 5 5 5 3 3 5 3 5 5 5 5 5 5 5 5 5 5 4 5 1 5 5 2 5 5 4 5 5
[260] 5 5 3 5 5 5 3 5 5 5 2 5 5 5 5 4 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 5 2 5 5 3 5
[297] 5 2 5 5
$thresholds
[1] -6.0006038 -4.8588168 -0.3608682 1.7670075 4.1024809 11.2818989