(poisum <- parameters (~ n,~ lambda,c (2 ,5 ,10 ),c (.5 ,1 ,1.5 ))
%>% add_trials (10000 )
%>% mutate (samp = pmap (list (n,lambda),\(x,y) rpois (x,y)),sn = map_dbl (samp,\(x) sum (x)))
%>% mutate (Fhat= cume_dist (sn),.by = c (n,lambda))
%>% mutate (F = ppois (sn,n* lambda))
)
# A tibble: 90,000 × 7
n lambda .trial samp sn Fhat F
<dbl> <dbl> <dbl> <list> <dbl> <dbl> <dbl>
1 2 0.5 1 <int [2]> 0 0.365 0.368
2 2 0.5 2 <int [2]> 1 0.737 0.736
3 2 0.5 3 <int [2]> 0 0.365 0.368
4 2 0.5 4 <int [2]> 1 0.737 0.736
5 2 0.5 5 <int [2]> 0 0.365 0.368
6 2 0.5 6 <int [2]> 2 0.922 0.920
7 2 0.5 7 <int [2]> 1 0.737 0.736
8 2 0.5 8 <int [2]> 1 0.737 0.736
9 2 0.5 9 <int [2]> 1 0.737 0.736
10 2 0.5 10 <int [2]> 2 0.922 0.920
# ℹ 89,990 more rows