Math 204 UL
2026-01-17
Definition 1.1.1 | \(\mathbb{R^2}\)
We let \(\text{R}^{2}\) denote the set of all vectors of the form \(\begin{bmatrix} x_{1} \\ x_{2}\end{bmatrix}\), where \(x_{1}\) and \(x_{2}\) are real numbers called the components of the vector. Mathematically, we write \[R^{2} = \biggl\{ \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} | x_{1}, x_{2} \in \mathbb{R} \biggl\}\]
We say two vectors \(\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}\), \(\begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} \in \mathbb{R}\) are equal if \(x_{1} = y_{1}\) and \(x_{2} = y_{2}\).
We write \[ \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} \]
Definition 1.1.1 cont’d | \(\mathbb{R^2}\)
Definition 1.1.2 | Addition and Scalar Multiplication in \(\mathbb{R^2}\)
Let \(\overrightarrow{x} = \begin{bmatrix}
x_{1} \\
x_{2}
\end{bmatrix}\), \(\overrightarrow{y} = \begin{bmatrix}
y_{1} \\
y_{2}
\end{bmatrix} \in \mathbb{R^{2}}\). We define addition of vectors by
\[\overrightarrow{x} + \overrightarrow{y} = \begin{bmatrix}
x_{1} \\
x_{2}
\end{bmatrix} + \begin{bmatrix}
y_{1} \\
y_{2}
\end{bmatrix} = \begin{bmatrix}
x_{1}+y_{1} \\
x_{2}+y_{2}
\end{bmatrix}\]
We define scalar multiplication of \(\overrightarrow{x}\) by a factor of \(t \in \mathbb{R}\), called a scalar, by \[t\overrightarrow{x} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} tx_{1} \\ tx_{2} \end{bmatrix}\]
Remark It is important to note that \(\overrightarrow{x} - \overrightarrow{y}\) is to be interpreted as \(\overrightarrow{x} + (-1)\overrightarrow{y}\).
Example 1.1.1 | Solve and graph
Solution 1.1.1 | Solve and graph
We have \(\overrightarrow{x} + \overrightarrow{y} = \begin{bmatrix} -2 + 5 \\ 3 + 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}\)
Example 1.1.2 | Finding vectors sum
Let \(\overrightarrow{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}\), \(\overrightarrow{v} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}\), \(\overrightarrow{w} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \in \mathbb{R^{2}}\).
Calculate
Solution 1.1.2(a) | Finding vectors sum
Example 1.1.2(b) | Finding vectors sum
Solution 1.1.2(c) | Finding vectors sum
:::::::::
Do It yourself 1.1.1 | Finding vectors sum
Let \(\overrightarrow{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}\), \(\overrightarrow{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}\), \(\overrightarrow{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in \mathbb{R^{2}}\).
Calculate each of the following and illustrate with a sketch
Do It yourself 1.1.1(a) | Solution for finding vectors sum
Do It yourself 1.1.1(b) | Solution finding vectors sum
Do It yourself 1.1.1(c) | Solution Finding vectors sum
Definition 1.1.3 | Linear Combination
Theorem | 1.1.1
For all \(\overrightarrow{w}, \overrightarrow{x}, \overrightarrow{y} \in \mathbb{R^{2}}\) and \(s, t \in \mathbb{R}\) we have:
closed under addition: \(\overrightarrow{x} + \overrightarrow{y} \in \mathbb{R^{2}}\)
addition is commutative: \(\overrightarrow{x} + \overrightarrow{y} = \overrightarrow{y} + \overrightarrow{x}\)
Theorem | 1.1.1
addition is associative: \((\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{w} = \overrightarrow{x} + (\overrightarrow{y} + \overrightarrow{w})\)
zero vector: There exists vector \(\overrightarrow{0} \in \mathbb{R^{2}}\) such that \(\overrightarrow{z} + \overrightarrow{0} = \overrightarrow{z}\) for all \(\overrightarrow{z} \in \mathbb{R^{2}}\)
additive inverses: For each \(\overrightarrow{x} \in \mathbb{R^{2}}\) there exists a vector \(-\overrightarrow{x} \in \mathbb{R^{2}}\) such that \(\overrightarrow{x} + (-\overrightarrow{x}) = \overrightarrow{0}\)
closed under scalar multiplication: \(s\overrightarrow{x} \in \mathbb{R^{2}}\)
scalar multiplication is associative: \(s(t\overrightarrow{x}) =st(\overrightarrow{x})\)
a distributive law: \((s + t)\overrightarrow{x} =s\overrightarrow{x} + t\overrightarrow{x}\)
scalar multiplicative identity: \(1\overrightarrow{x} =\overrightarrow{x}\)
Definition 1.1.4 | The Vector Equation of a Line in \(\mathbb{R^2}\)
A line through the origin in \(\mathbb{R^{2}}\) is a set of the form \[\{t\overrightarrow{d}| t \in \mathbb{R}\}\] Often we do not use formal set notation but simply write a vector equation of the line: \[\overrightarrow{x} = t\overrightarrow{d}, \quad t \in \mathbb{R}\]
The non-zero vector \(\overrightarrow{d}\) is called a direction vector of the line.
Similarly, we define a line through \(\overrightarrow{p}\) with direction vector \(\overrightarrow{d} \neq \overrightarrow{0}\) to be the set
Definition 1.1.4 cont’d | The Vector Equation of a Line in \(\mathbb{R^2}\)
\[ \{\overrightarrow{p} + t\overrightarrow{d}| t \in \mathbb{R}\}\] which has vector equation \[\overrightarrow{x} = \overrightarrow{p} + t\overrightarrow{d}, \quad t \in \mathbb{R}\] This line is parallel to the line with equation \(\overrightarrow{x} = t\overrightarrow{d}, \quad t \in \mathbb{R}\) because of the parallelogram rule for addition.
Two lines are parallel if the direction vector of one line is a non-zero scalar multiple of the direction vector of the other line.
Definition 1.1.4 cont’d | The Vector Equation of a Line in \(\mathbb{R^2}\)
Example 1.1.3 | Vector Equation of a Line
Solution 1.1.3 | Vector Equation of a Line
Definitin 1.1.5 | Parametric Equations
Definitin 1.1.6 | Scalar Equation
Example 1.1.4 | Vector, Parametric and Scalar Equations
Solution 1.1.4 | Vector, Parametric and Scalar Equations
A vector equation is \(\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} + t\begin{bmatrix} -5 \\ 1 \end{bmatrix}, t \in \mathbb{R}\).
So, the parametric equation are \(\begin{align*} \left\{ \begin {aligned} & x_{1} = 3 - 5t \\& & t \in \mathbb{R} \\ & x_{2} = 4 + t \end{aligned} \right. \end{align*}\)
Solution 1.1.4 cont’d | Vector, Parametric and Scalar Equations
Provided that \(d_{1} \neq 0\) we solve the first equation for \(t\) to get \[\frac{-x_{1} + 3}{5} = t\]
Substituting this into the second equation gives the scalar equation \[x_{2} = 4 - \frac{1}{5}(x_{1} - 3)\]
Directed Line Segments
Directed Line Segments
For arbitrary points \(Q, R, S,\) and \(T\) in \(\mathbb{R^{2}}\), we define \(\overrightarrow{QR}\) to be equivalent to \(\overrightarrow{ST}\) if they are both equivalent to the same \(\overrightarrow{OP}\) for some \(P\). That is, if \[\overrightarrow{r} - \overrightarrow{q} = \overrightarrow{p}\] and \[\overrightarrow{t} - \overrightarrow{s} = \overrightarrow{p}\] for the same \(\overrightarrow{p}\)
We have used one directed line segment \(\overrightarrow{OP}\) starting from the origin in our definition.
Example 1.1.5 | Directed Line Segment
Solution 1.1.5 | Directed Line Segment
\(\overrightarrow{r} -\overrightarrow{q} = \begin{bmatrix} 6 \\ -1 \end{bmatrix} - \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ -4 \end{bmatrix}\)
\(\overrightarrow{t} -\overrightarrow{s} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} - \begin{bmatrix} -2 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ -4 \end{bmatrix}\)
Therefore \(\overrightarrow{QR} = \overrightarrow{r} -\overrightarrow{q} = \overrightarrow{ST} = \overrightarrow{t} -\overrightarrow{s}\).
Solution 1.1.5 cont’d | Directed Line Segment
Example 1.1.6 | Vector Equation
Solution 1.1.6 | Vector Equation
\(\overrightarrow{PQ} = \overrightarrow{q} -\overrightarrow{p} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}\)
Hence, a vector equation of the line with direction \(\overrightarrow{PQ}\) that passes through \(P(1,2)\) is \(\overrightarrow{x} = \overrightarrow{p} + t\overrightarrow{PQ} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + t\begin{bmatrix} 2 \\ -3 \end{bmatrix}, \, t\in \mathbb{R}\)
Solution 1.1.6 | Vector Equation
Do It yourself 1.1.2 | Finding Vector Equation of a Line
Do It yourself 2 | Solution 2
\(\overrightarrow{PQ} = \overrightarrow{q} -\overrightarrow{p} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}\)
Hence, a vector equation of the line with direction \(\overrightarrow{PQ}\) that passes through \(P(1,1)\) is \(\overrightarrow{x} = \overrightarrow{p} + t\overrightarrow{PQ} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + t\begin{bmatrix} -3 \\ 1 \end{bmatrix}, \, t\in \mathbb{R}\)
Definition | Vectors, Lines, and Planes in \(\mathbb{R^{3}}\)
We define \(\text{R}^{3}\) to be the set of all vectors of the form \(\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}\), with \(x_{1}\), \(x_{2}, x_{3} \in \mathbb{R}\).
Mathematically, we write \[ R^{3} = \biggl\{ \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} | x_{1}, x_{2}, x_{3} \in \mathbb{R} \biggl\} \]
We say two vectors \(\overrightarrow{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}\), \(\overrightarrow{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix}\) are equal and write \(\overrightarrow{x} = \overrightarrow{y}\) if \(x_{i} = y_{i}\), for \(i = 1, 2, 3.\)
Vectors, Lines, and Planes in \(\mathbb{R^{3}}\)
Let \(\overrightarrow{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}\), \(\overrightarrow{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix} \in \mathbb{R^{3}}\).
We define addition of vectors by \[ \overrightarrow{x} + \overrightarrow{y}= \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix} = \begin{bmatrix} x_{1} + y_{1} \\ x_{2} + y_{2}\\ x_{3} + y_{3} \end{bmatrix} \]
We define the scalar multiplication of \(\overrightarrow{x}\) by a scalar \(t \in \mathbb{R}\) by \[t\overrightarrow{x} = t\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} tx_{1} \\ tx_{2} \\ tx_{3} \end{bmatrix} \].
Example 1.1.7 | Vectors, Lines, and Planes in
Solution 1.1.7 | Vectors, Lines, and Planes in
Example 1.1.8 | Vectors, Lines, and Planes in
Solution 1.1.8 | Vectors, Lines, and Planes in
A direction vector is \(\overrightarrow{PQ} = \overrightarrow{q} -\overrightarrow{p} = \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 \\ 5 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \\ 5 \end{bmatrix}\)
Hence, a vector equation of the line with direction \(\overrightarrow{PQ}\) that passes through \(P(1,5,-2)\) is \(\overrightarrow{x} = \overrightarrow{p} + t\overrightarrow{PQ} = \begin{bmatrix} 1 \\ 5 \\ -2 \end{bmatrix} + t\begin{bmatrix} 3 \\ -6\\ 5 \end{bmatrix}, \, t\in \mathbb{R}\)
Solution 1.1.8 cont’d | Vectors, Lines, and Planes in
Vectors, Lines, and Planes in \(\mathbb{R^{3}}\)
Vectors, Lines, and Planes in \(\mathbb{R^{3}}\)
Vectors, Lines, and Planes in \(\mathbb{R^{3}}\)
Example 1.1.9 | Vectors, Lines, and Planes in \(\mathbb{R^{3}}\)
Solution 1.1.9(a) | Vectors, Lines, and Planes in \(\mathbb{R^{3}}\)
Solution 1.1.9(a) cont’d | Vectors, Lines, and Planes in \(\mathbb{R^{3}}\)
For these vectors to be equal we must have \[s + t = 5/2, \quad 2t = 1, \quad s + 2t = 3\]
We find that the values \(t = 1/2\) and \(s = 2\) satisfies all three equations. Hence, we have found that \(\overrightarrow{p}\) is in the plane. In particular, \[\begin{bmatrix} 5/2 \\ 1 \\ 3 \end{bmatrix}= 2\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \frac{1}{2}\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}\]
::::::::
Solution 1.1.9(b) | Vectors, Lines, and Planes in \(\mathbb{R^{3}}\)
Solution 1.1.9(c) cont’d | Vectors, Lines, and Planes in \(\mathbb{R^{3}}\)
For these vectors to be equal we must have \[s + t = 1, \quad 2t = 1, \quad s + 2t = 3\]
The middle equation shows us that we must have \(t = 1/2\) However, then we would \(s = 1/2\) for the equation and \(s = 0\) for the third equation. Therefore, there is no value of \(s\) and \(t\) that satisfies all three equations. Thus, \(\overrightarrow{q}\) is not a linear combination of \[ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \, \text{and} \, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}\], so \(\overrightarrow{q}\) is not in the plane.
Do It Yourself 3 | Vectors, Lines, and Planes in
Do It Yourself 4 | Vectors, Lines, and Planes in
Do It Yourself 1.1.5 | Vectors, Lines, and Planes in
Definition 1.2.1 | Span in \(\mathbb{R^2}\)
Let \(B = \{\overrightarrow{v_{1}},\cdots, \overrightarrow{v_{k}}\}\) be a set of vectors in \(\mathbb{R^{2}}\) or a set of vectors in \(\mathbb{R^{3}}\). We define the span of B, denoted Span B, to be the set of all possible linear combinations of the vectors in B. Mathematically, \[\text{Span }B = \{c_{1}\overrightarrow{v_{1}}+\cdots +\overrightarrow{v_{k}}\} | c_{1}, \cdots, \in \mathbb{R}\}\]
A vector equation for Span B is \[\overrightarrow{x} = c_{1}\overrightarrow{v_{1}}+ \cdots + c_{k}\overrightarrow{v_{k}}, \quad c_{1}, \cdots c_{k} \in \mathbb{R} \]
If \(S = \text{Span }B\), then we say that B spans S, that B is a spanning set for S, and that S is spanned by B.
Example 1.2.1 | Span in \(\mathbb{R^2}\)
Solution 1.2.1 | Span in \(\mathbb{R^2}\)
A vector equation for the spanned set is \[\overrightarrow{x} = s\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad s \in \mathbb{R}\]
Thus, the spanned set is a line in \(\mathbb{R^{2}}\) through the origin with direction vector \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\).
Example 1.2.2 | Span in \(\mathbb{R^2}\)
Solution 1.2.2 | Span in \(\mathbb{R^2}\)
Solution 1.2.2 cont’d | Span in \(\mathbb{R^2}\)
Performing operations on vectors on the right-hand side gives \[\begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} c_{1} - c_{2} \\ 2c_{1} + c_{2} \end{bmatrix} \]
Since vectors are equal if and only if and only if their corresponding entries are equal, we get that this vector equation implies \[\begin{align*} 3 &= c_{1} - c_{2} \\ 1 &= 2c_{1} + c_{2} \end{align*} \]
Solution 1.2.2 cont’d | Span in \(\mathbb{R^2}\)
Adding the equation gives \(4 = 3c_{1}\) and so \(c_{1}=\frac{4}{3}\) and \(c_{2}=-\frac{5}{3}\). Hence, we have that \[\begin{bmatrix} 3 \\ 1 \end{bmatrix} = \frac{4}{3}\begin{bmatrix} 1 \\ 2 \end{bmatrix} - \frac{5}{3}\begin{bmatrix} -1 \\ 1 \end{bmatrix}\]
Thus, by definition, \[\begin{bmatrix} 3 \\ 1 \end{bmatrix} \in \text{Span} \biggl\{\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}\biggl\}\]
Example 1.2.3 | Span in \(\mathbb{R^2}\)
Solution 1.2.3 | Span in \(\mathbb{R^2}\)
We need to determine whether there exists \(c_{1}, c_{2} \in \mathbb{R}\) such that \[\begin{bmatrix} x\\ y \end{bmatrix} = c_{1}\begin{bmatrix} 1\\ 0 \end{bmatrix} + c_{2}\begin{bmatrix} 0\\ 1 \end{bmatrix}\]
We observe that we can take \(c_{1} = x\) and \(c_{2} = y\). That is, we have
\[\begin{bmatrix} x\\ y \end{bmatrix} = x\begin{bmatrix} 1\\ 0 \end{bmatrix} + y\begin{bmatrix} 0\\ 1 \end{bmatrix}\] So, Span\(\{\overrightarrow{\textbf{i}},\overrightarrow{\textbf{j}}\}=\mathbb{R^{2}}.\)
Example 1.2.4 | Span in \(\mathbb{R^2}\)
Solution 1.2.4 | Span in \(\mathbb{R^2}\)
Using the definition of span, a vector equation of the spanned set is \[\overrightarrow{x}=s\begin{bmatrix} 3 \\ 2 \end{bmatrix} + t\begin{bmatrix} 6 \\ 4 \end{bmatrix}, \quad s,t \in \mathbb{R}\]
Observe that we can rewrite this as \[\overrightarrow{x}=s\begin{bmatrix} 3 \\ 2 \end{bmatrix} + (2t)\begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad s,t \in \mathbb{R}\]
Solution 1.2.4 | Span in \(\mathbb{R^2}\)
\[\overrightarrow{x}= (s+2t)\begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad s,t \in \mathbb{R}\]
Since \(c=s+2t\) can take any real value, the spanned set is a line through the origin with direction vector \(\begin{bmatrix} 3 \\ 2 \end{bmatrix}\).
Example 1.2.5 | Span in \(\mathbb{R^2}\)
Solution 1.2.5 | Span in \(\mathbb{R^3}\)
By definition, a vector equation of the spanned set is \[\overrightarrow{x}=c_{1}\begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix} + c_{2}\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}+ c_{2}\begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}, \\ c_{1},c_{2},c_{3} \in \mathbb{R}\]
We observe that \(\begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}+ \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}\).
Solution 1.2.5 | Span in \(\mathbb{R^3}\)
Hence, we can rewrite the vector equation as \[\vec{x}= c_{1}\begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix} + c_{2}\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + \\ c_{3}\left\{\begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}\right\},\\ c_{1},c_{2},c_{3} \in \mathbb{R}\]
Solution 1.2.5 cont’d | Span in \(\mathbb{R^3}\)
Since \(\begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix}\) and \(\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}\) are not scalar multiples of each other, we cannot simplify the vector equation any more. Thus, the set is a plane with vector equation
\[\overrightarrow{x}=s\begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix} + t\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \quad s,t \in \mathbb{R}\]
Linear Independence and Bases | in \(\mathbb{R^2}\) and \(\mathbb{R^3}\) | Definition
Let \(B = \{\overrightarrow{v_{1}},\cdots,\overrightarrow{v_{k}}\}\) be a set of vectors in \(\mathbb{R^{2}}\) or a set in \(\mathbb{R^{3}}\). The set \(B\) is said to be linearly dependent if there exist real coefficients \(c_{1},\cdots,c_{k}\) not all zero such that \[c_{1}\overrightarrow{v_{1}} + \cdots + c_{k}\overrightarrow{v_{k}} = \overrightarrow{0}\]
The set \(B\) is said to be linearly independent if the only solution to \[c_{1}\overrightarrow{v_{1}} + \cdots + c_{k}\overrightarrow{v_{k}} = \overrightarrow{0}\] is \(c_{1} = c_{2}=\cdots = c_{k} = 0\) (called the trivial solution).
::::::::::
Example 1.2.6 | Linearly independent
Solution 1.2.6 | Linearly independent
Solution 1.2.6 cont’d | Linearly independent
Comparing entries gives the system of equations \[c_{1}+c_{3}=0, \quad c_{2}+c_{3}=0, \quad c_{1}+c_{2}=0\]
Adding the first to the second and then subtracting the third gives \(2c_{3}=0\). Hence, \(c_{3}=0\) which then implies \(c_{1}=c_{2}=0\) from the first and second equations. Since \(c_{1}=c_{2}=c_{3}=0\) is the only solution, the set is linearly independent.
Example 1.2.7 | Linearly independent
Solution 1.2.7 | Linearly independent
We consider the equation \[\begin{bmatrix} 0 \\ 0 \end{bmatrix}=c_{1}\begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_{2}\begin{bmatrix} 1 \\ 0 \end{bmatrix}+ c_{3}\begin{bmatrix} 2 \\ 2 \end{bmatrix}\]
We observe that taking \(c_{1}=-2\), \(c_{2}=0\), and \(c_{3}=1\) satisfies the equation. Hence, by definition, the \(C\) is linearly dependent.
Theorem 1.2.2 | Linearly independent
Definition 1.2.2 | Basis of \(\mathbb{R^{2}}\) and \(\mathbb{R^{3}}\)
Let \(B=\{\overrightarrow{v_{1}},\overrightarrow{v_{2}}\}\) be a set in \(\mathbb{R^{2}}\). If \(B\) is linearly independent and Span \(B=\mathbb{R^{2}}\), then the set \(B\) is called a basis of \(\mathbb{R^{2}}\).
Let \(B=\{\overrightarrow{v_{1}},\overrightarrow{v_{2}}, \overrightarrow{v_{3}}\}\) be a set in \(\mathbb{R^{3}}\). If \(B\) is linearly independent and Span \(B=\mathbb{R^{3}}\), then the set \(B\) is called a basis of \(\mathbb{R^{3}}\).
Remarks | Linearly independent
The plural of basis is bases. As we will see, both \(\mathbb{R^{2}}\) and \(\mathbb{R^{3}}\) have infinitely many bases.
Here we are relying on our geometric intuition to say that all bases of \(\mathbb{R^{2}}\) have exactly two vectors and all bases of \(\mathbb{R^{3}}\) have exactly three vectors. In Chapter 2, we will mathematically prove this assertion.
Example 1.2.8 | Linearly independent
Solution 1.2.8 | Linearly independent
To show that \(B\) is a basis, we need to prove that it is linearly independent and spans \(\mathbb{R^{3}}\).
Linear independent consider: \[\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}=c_{1}\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_{2}\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}+ c_{3}\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}=\begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}\]
Comparing entries, we get that \(c_{1}=c_{2}=c_{3}=0\). Therefore, \(B\) is linearly independent.
Solution 1.2.8 | Linearly independent
Spanning: Let \(\begin{bmatrix}x_{1} \\ x_{2} \\ x_{3}\end{bmatrix}\) be any vector in \(\mathbb{R^{3}}\). Observe that we have \[\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}=x_{1}\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_{2}\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}+ x_{3}\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \]
Hence, Span\(B = \mathbb{R^{3}}\)
Since \(B\) is linearly independent spanning set for \(\mathbb{R^{3}}\), it is a basis for \(\mathbb{R^{3}}\).
Example 1.2.9 | Linearly independent
Solution 1.2.9 | Linearly independent
We need to show that Span \(C=\mathbb{R^{2}}\) and that \(C\) is linearly independent.
Spanning: Let \(\begin{bmatrix}x_{1} \\ x_{2}\end{bmatrix} \in \mathbb{R^{2}}\) and consider \[\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}=c_{1}\begin{bmatrix} -1 \\ 2 \end{bmatrix} + c_{2}\begin{bmatrix} 1 \\ 1 \end{bmatrix}= \begin{bmatrix} -c_{1}+c_{2} \\ 2c_{1}+c_{2} \end{bmatrix}\]
Comparing entries, we get two equations in two unknowns
\[\begin {aligned} & -c_{1} + c_{2} = x_{1} \\ & -c_{1} + c_{2} = x_{2} \\ \end{aligned}\]
Solving gives \(c_{1}=\frac{1}{3}(-x_{1}+x_{2})\) and \(c_{2}=\frac{1}{3}(2x_{1}+x_{2})\).
Solution 1.2.9 cont’d | Linearly independent
\[\frac{1}{3}(-x_{1}+x_{2})\begin{bmatrix} -1 \\ 2 \end{bmatrix} + \frac{1}{3}(2x_{1}+x_{2})\begin{bmatrix} 1 \\ 1 \end{bmatrix}\]
Thus, Span\(C=\mathbb{R^{2}}\).
Linear Independence: Take \(x_{1}=x_{2}=0\) in equation above. Our general solution to that equation says that the only solution is \(c_{1}=\frac{1}{3}(-0+0)=0\) and \(c_{2}=\frac{1}{3}(2(0)+0)=0\). So \(C\) is also linearly independent. Therefore, \(C\) is a basis for \(\mathbb{R^{2}}\).
Definition 1.2.3 | Coordinates in \(\mathbb{R^{2}}\)
Example 1.2.10 | Coordinates with respect to Basis
Solution 1.2.10 | Coordinates with respect to Basis
From our work in Example 1.2.9 we have that the coordinates are:
Solution 1.2.10 cont’d | Coordinates with respect to Basis
Example 1.2.11 | Coordinates with respect to Basis
\(B=\left\{\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}\right\}\) is a basis for \(\mathbb{R^{2}}\), find the coordinates of \(\overrightarrow{x}=\begin{bmatrix} 4 \\ 1 \end{bmatrix}\) with respect to \(B\).
Solution 1.2.11 | Coordinates with respect to Basis
Solution 1.2.11 cont’d | Coordinates with respect to Basis
Comparing entries gives the system of two equations in two unknowns \[\begin {aligned} & c_{1} + 2c_{2} = 4 \\ & 2c_{1} + c_{2} = 1 \\ \end{aligned}\]
Solving, we find that the coordinates of \(\overrightarrow{x}\) with respect to the basis \(B\) are \(c_{1}=-2/3\) and \(c_{2}=7/3\).
In many physical applications, we are given measurements in terms of angles and magnitudes. We must convert this data into vectors so that we can apply the tools of linear algebra to solve problems. For example, we may need to find a vector representing the path(and speed) of a plane flying northwest at 1300km/h. To do this, we need to identify the length of a vector and the angle between two vectors. In this section, we see how we can calculate both of these quantities with the dot product operator.
1.3.1 Length of a Vector | Pythagorean Theorem
Recall the distance formula in the plane: the distance between two points \((x_{1},y_{1})\) and \((x_{2},y_{2})\) is \(d = \sqrt{(x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2}}\) (see Figure 8).
This formula arises from the Pythagorean Theorem for right triangles.
The 2-vector between the points is \([a_1,a_2]\) where \(a_1 = x_2 -x_1\) and \(a_2 = y_2 - y_1\), so \(d = \sqrt{a_1^2 + a_2^2}\)
This formula motivates the following definition:
::::
1.3.1 Length of a Vector | Pythagorean Theorem
Definition 1.3.1 | Length of a Vector
Example 1.3.1 | Length of a Vector
Solution 1.3.1 | Length of a Vector
Definition 1.3.2 | Unit Vector
Definition 1.3.2 | Unit Vector
In \(\mathbb{R^2}\), the vector \(\bigg[\dfrac{3}{5}, -\dfrac{4}{5}\bigg]\) is a unit vector, because \(\sqrt{\bigg(\dfrac{3}{5}\bigg)^2 + \bigg(-\dfrac{4}{5}\bigg)^2} = 1\).
Certain unit vectors are particularly useful: those with a single coordinate equal to 1 and all other coordinates equal to 0.
In \(\mathbb{R^3}\) they are represented by \(\textbf{i} = [1,0,0]\), \(\textbf{j} = [0,1,0]\), and \(\textbf{k} = [0,0,1]\). These vectors are called standard unit vectors.
Exercise 1.3.1 | Length of a Vector
Find a vector that represents a movement from the first (initial) point to the second (terminal) point. Then use this vector to find the distance between the given points.
Solution 1.3.1a | Length of a Vector
\[\begin{align}\textbf{v} &= \textbf{v}_2 - \textbf{v}_1 \\&=\begin{bmatrix} 5\\ -1\end{bmatrix} -\begin{bmatrix} -4\\ 3\end{bmatrix} = \begin{bmatrix} 9\\ -4\end{bmatrix}\end{align}\]
\[\begin{align}||\textbf{v}|| &= \sqrt{9^2 + (-4)^2} \\ &= \sqrt{81 + 16} \\ &= \sqrt{97} \end{align}\]
Solution 1.3.1b | Length of a Vector
\[\begin{align}\textbf{v} &= \textbf{v}_2 -\textbf{v}_1 \\&=\begin{bmatrix} -3\\ 2\\ 0\end{bmatrix} -\begin{bmatrix} 8\\ -2 \\5\end{bmatrix} = \begin{bmatrix} -11\\ 4\\ -5\end{bmatrix}\end{align}\]
\[\begin{align}||\textbf{v}|| &= \sqrt{(-11)^2 + (4)^2 + (-5)^2} \\ &= \sqrt{121 + 16 + 25} \\ &= \sqrt{162} \\ &= 9\sqrt{2} \end{align}\]
Theorem 1.3.1 | Unit Vector
Definition 1.3.1 | Unit Vector
The process of “dividing” a vector by its length to obtain a unit vector in the same direction is called normalizing the vector
Example 1.3.2 | Unit Vector
Solution 1.3.2 | Unit Vector
The norm of \(||\textbf{x}|| = \sqrt{2^2 + 3^2 + (-1)^2 + 1^2} =\sqrt{15}\)
\[\begin{align} \textbf{u} &= \bigg(\frac{1}{||\textbf{x}||}\bigg)\textbf{x}\\ &= \bigg(\frac{1}{\sqrt{15}}\bigg)[2,3,-1,1] \\&= \bigg[\frac{2}{\sqrt{15}},\frac{3}{\sqrt{15}},\frac{-1}{\sqrt{15}},\frac{1}{\sqrt{15}} \bigg] \end{align}\]
Exercise 1.3.2 | Unit Vector
Solution 1.3.2 | Unit Vector
Solution 1.3.2 | Unit Vector
1.3.3 Physical Application of Addition and Scalar Multiplication
Addition and scalar multiplication of vectors are often used to solve problems in physics.
Recall the trigonometric fact that if \(\textbf{v}\) is a vector in \(\mathbb{R^2}\) forming an angle of \(\theta\) with the positive \(x-\)axis then \(\textbf{v}=[||\textbf{v}||cos\theta,||\textbf{v}||sin\theta]\), as in the Figure 10 below.
1.3.3 Physical Application of Addition and Scalar Multiplication
Example 1.3.3 | Resultant Velocity
Solution 1.3.3 | Resultant Velocity
Solution 1.3.3 | Resultant Velocity
Solution 1.3.3 | Resultant Velocity
Example 1.3.4 | Newton’s Second Law
Solution 1.3.4 | Newton’s Second Law
To find vectors representing \(\textbf{f}_1\) and \(\textbf{f}_2\):
First, we multiply the magnitude each vector by a unit vector in that vector’s direction. The magnitude \(\textbf{f}_1\) and \(\textbf{f}_2\) of are 10 and 20, respectively.
Next, we normalize the direction vectors \([-2,1,2]\) and \([6,3,-2]\) to create unit vectors in those directions, obtaining \([-2,1,2]/||[-2,1,2]||\) and \([6,3,-2]/||[6,3,-2]||\), respectively.
Solution 1.3.4 | Newton’s Second Law
Therefore, \(\textbf{f}_1 = 10([-2,1,2]/||[-2,1,2]||)\), and \(\textbf{f}_2 = 20([6,3,-2]/||[6,3,-2]||)\)
Now, the net force on the object is \(\textbf{f} = \textbf{f}_1 + \textbf{f}_2\).
Thus, the net acceleration on the object is \[\begin{align}\textbf{a} &= \frac{1}{m}\textbf{f} = \frac{1}{m}(\textbf{f}_1 + \textbf{f}_2) \\&= \frac{1}{5}\bigg(10\bigg(\frac{[-2,1,2]}{||[-2,1,2]||}\bigg) + 20\bigg(\frac{[6,3,-2]}{||[6,3, -2]||}\bigg)\bigg)\end{align}\]
Solution 1.3.4 | Newton’s Second Law
which equals \(\frac{2}{3}[-2,1,2] + \frac{4}{7}[6,3,-2] = \bigg[\frac{44}{21},\frac{50}{21},\frac{4}{21} \bigg]\).
The length of \(\textbf{a}\) is approximately 3.18, so pulling out a factor of 3.18 from each coordinate, we can approximate \(\textbf{a}\) as \(3.18[0.66,0.75,0.06]\), where \([0.66,0.75,0.06]\) is a unit vector. Hence, the acceleration is about 3.18 m/sec\(^2\) in the direction \([0.66,0.75,0.06]\).
Exercise 1.3.3 | Equilibrium
Exercise 1.3.3 | Equilibrium
Definition 1.3.5 | Vectors in the same direction, opposite directions, and parallel
Two nonzero vectors \(\textbf{x}\) and \(\textbf{y}\) are in \(\mathbb{R^n}\) are in the same direction if and only if there is a positive real number c such that \(\textbf{y} = c\textbf{x}.\)
Two nonzero vectors \(\textbf{x}\) and \(\textbf{y}\) are in \(\mathbb{R^n}\) are in the opposite directions if and only if there is a negative real number c such that \(\textbf{y} = c\textbf{x}.\)
Two nonzero vectors are parallel if and only if they are in the same direction or in the opposite direction.
Example 1.3.5 | Vectors in the same direction, opposite directions, and parallel
Which of the following pairs of vectors are parallel? Tell whether they are in the same direction or opposite directions.
Solution 1.3.5 | Vectors in the same direction, opposite directions, and parallel
Hence
the vectors are in the same direction because \([3,-9,6]=3[1,-3,2]\) (or because \([1,-3,2]=\frac{1}{3}[3,-9,6]\))
the vectors are in the opposite directions because \([4,-8,0,-20]=-\frac{4}{3}[-3,6,0,15]\)
Definition 1.3.5 | The Dot Product
Example 1.3.6 | The Dot Product
Calculate the dot product of the following pairs of vectors.
\(\vec{x}=\begin{bmatrix} 1 \\ -2\\ 1 \end{bmatrix}\) and \(\vec{y}=\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}\) .
\(\vec{u}=\begin{bmatrix} 1/2 \\ 0\\ 1/2 \end{bmatrix}\) and \(\vec{v}=\begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}\)
Solution 1.3.6 | The Dot Product
Theorem 1.3.1 | The Dot Product
If \(\textbf{x}, \textbf{y}\) and \(\textbf{z}\) are any vectors in \(\mathbb{R^n}\), and if c is any scalar, then
\(\textbf{x}\cdot\textbf{y} = \textbf{y}\cdot\textbf{x}\hspace{5.4cm}\) Commutativity of Dot Product
\(\textbf{x}\cdot\textbf{x} = ||\textbf{x}||^2 \ge 0 \hspace{4cm}\) Relationship Between Dot Product and Length
\(\textbf{x}\cdot\textbf{x} = 0\) if and only if \(\textbf{x} = \textbf{0}\)
\(c(\textbf{x} \cdot \textbf{y}) = (c\textbf{x})\cdot\textbf{y}=\textbf{x}\cdot (c\textbf{y}) \hspace{0.7cm}\) Relationship Between Scalar Multiplication and Dot Product
\(\textbf{x} \cdot (\textbf{y} +\textbf{z}) = (\textbf{x}\cdot\textbf{y}) + (\textbf{x}\cdot \textbf{z}) \hspace{1cm}\) Distributive Laws of Dot Product
\(\textbf{x} + (\textbf{y} \cdot \textbf{z}) = (\textbf{x}\cdot\textbf{z}) + (\textbf{y}\cdot \textbf{z}) \hspace{1cm}\) Over Addition
Example 1.3.7 | Proof of the Distributive Law
Example 1.3.7 | Proof of the Distributive Law
Let \(\textbf{x}=[x_1,x_2,\dots, x_n]\), \(\textbf{y}=[y_1,y_2,\dots, y_n]\), and \(\textbf{z}=[z_1,z_2,\dots, z_n]\). Then,
\[\begin{align} \textbf{x}\cdot (\textbf{y} +\textbf{z}) &= [x_1,x_2,\dots, x_n] \cdot ([y_1,y_2,\dots, y_n] + [z_1,z_2,\dots, z_n]) \\&= [x_1,x_2,\dots, x_n] \cdot [y_1 + z_1, y_2 + z_2, \dots , y_n + z_n] \\&= x_1(y_1 + z_1) + x_2(y_2 + z_2) + \cdots + x_n(y_n + z_n) \\&= (x_1y_1 + x_2y_2 + \cdots + x_ny_n) + (x_1z_1 + x_2z_2 + \cdots + x_nz_n). \end{align}\]
Also
\[\begin{align} (\textbf{x}\cdot \textbf{y}) + (\textbf{x}\cdot \textbf{z}) &= ([x_1,x_2,\dots, x_n] \cdot [y_1,y_2,\dots, y_n]) \\& + ([x_1,x_2,\dots, x_n] \cdot [z_1,z_2,\dots, z_n]) \\&= (x_1y_1 + x_2y_2 + \cdots + x_ny_n) + (x_1z_1 + x_2z_2 + \cdots + x_nz_n). \end{align}\]
Hence, \(\textbf{x}\cdot (\textbf{y} + \textbf{z}) = (\textbf{x} \cdot \textbf{y}) + (\textbf{x} \cdot \textbf{z})\)
Example 1.3.8 | Dot Product Distributive Law
Solution 1.3.8 | Dot Product Distributive Law
1.3.6 | Inequalities Involving the Dot Product
The following lemma is used in the proof of Theorem 1.7 below.
A lemma is a theorem whose main purpose is to assist in the proof of a more powerful result.
Lemma 1.6 | Inequalities Involving the Dot Product
Proof of Lemma 1.6 | Inequalities Involving the Dot Product
Proof. Notice that the term \(\textbf{a}\cdot \textbf{b}\) appears in the expression of \((\textbf{a}+\textbf{b})\cdot(\textbf{a}+\textbf{b})\), as well as in the expression of \((\textbf{a}-\textbf{b})\cdot(\textbf{a}-\textbf{b}).\) The first gives
A similar argument beginning with \((\textbf{a}-\textbf{b})\cdot (\textbf{a}-\textbf{b}) = ||\textbf{a}-\textbf{b}||^2 \ge 0\) shows \(\textbf{a}\cdot\textbf{b}\le1\) (Do Exercise 8).
Hence \(-1 \le \textbf{a}\cdot \textbf{b}\le 1\).
Theorem 1.7 | Cauchy-Schwarz Inequality
\[\begin{align}|\textbf{x}\cdot\textbf{y}| \le (||\textbf{x}||)(||\textbf{y}||) \end{align}\].
Proof Theorem 1.7 | Cauchy-Schwarz Inequality
Proof. If \(\textbf{x} = \textbf{0}\) or \(\textbf{y}=\textbf{0}\), the theorem is certainly true. Hence, we need only examine the case when both \(||\textbf{x}||\) and \(||\textbf{y}||\) are nonzero. We need to prove \(-(||\textbf{x}||)(||\textbf{y}||)\le\textbf{x}\cdot\textbf{y}\le(||\textbf{x}||)(||\textbf{y}||)\).
This statement is true if and only if \[\begin{align} -1 \le \frac{\textbf{x}\cdot\textbf{y}}{(||\textbf{x}||)(||\textbf{y}||)} \le 1 \end{align}\]
But \(\textbf{x}\cdot\textbf{y}/(||\textbf{x}||)(||\textbf{y}||)\) is equal to \((\textbf{x}/||\textbf{x}||)\cdot(\textbf{y}/||\textbf{y}||)\).
However, both \(\textbf{x}/||\textbf{x}||\) and \(\textbf{y}/||\textbf{y}||\) are unit vectors, so by Lemma 1.6, their dot product satisfies the required double inequality above.
Example 1.3.9 | Cauchy-Schwarz Inequality
Solution 1.3.9 | Cauchy-Schwarz Inequality
\(\textbf{x}\cdot\textbf{y} = 0 + 3 + 4 = 7\)
Also \(||\textbf{x}|| = \sqrt{0 + 9 + 16} = \sqrt{25}=5\) and \(||\textbf{y}|| = \sqrt{1 + 1 + 1} = \sqrt{3}\)
Then \(|\textbf{x}\cdot\textbf{y}| \le (||\textbf{x}||)(||\textbf{y}||)\), because \(|7| = 7 \le 5\sqrt{3}\approx 8.66\)
Theorem 1.8 | Minkowshi’s Inequallity (Triangle Inequality)
1.3.7 | The Angle Between Two Vectors
Consider the vectors \(\textbf{x}-\textbf{y}\) in Figure 14, which begins are the terminal point of \(\textbf{y}\) and ends at the terminal point of \(\textbf{x}.\) Because \(0\le\theta\le\pi\), it follows from the Law of Cosines (please derive this law from the given figure) that \[\begin{align} ||\textbf{x} - \textbf{y}||^2 = ||\textbf{x}||^2 + ||\textbf{y}||^2 -2(||\textbf{x}||)(||\textbf{y}||)cos\theta \end{align}\].
1.3.7 | The Angle Between Two Vectors
But, \[\begin{align} ||\textbf{x} - \textbf{y}||^2 &= (\textbf{x} - \textbf{y})\cdot (\textbf{x} - \textbf{y}) \\&= (\textbf{x}\cdot\textbf{x}) - 2(\textbf{x}\cdot\textbf{y}) + (\textbf{y}\cdot\textbf{y}) \\&= ||\textbf{x}||^2 - 2(\textbf{x}\cdot\textbf{y}) + ||\textbf{y}||^2. \end{align}\]
Equating these two expressions for \(||\textbf{x} - \textbf{y}||^2\), and then canceling like terms yields \[\begin{align} -2||\textbf{x}||||\textbf{y}||cos\theta = -2(\textbf{x}\cdot\textbf{y}) \end{align}\]
This implies \[\begin{align} ||\textbf{x}||||\textbf{y}||cos\theta = (\textbf{x}\cdot\textbf{y}) \end{align}\], and so
\[\begin{align} cos\theta =\frac{ (\textbf{x}\cdot\textbf{y})}{||\textbf{x}||||\textbf{y}||}. \end{align}\]
Example 1.3.10 | The Angle Between Two Vectors
Solution 1.3.10 | The Angle Between Two Vectors
\[\begin{align} \text{cos } \theta &= \frac{\textbf{x} \cdot \textbf{y}}{(||\textbf{x}||)(||\textbf{y}||)} \\&= \frac{(6)(-2) + (-4)(3)}{\sqrt{6^2 + (-4)^2}\times \sqrt{(-2)^2 + 3^2}} \\&=-\frac{24}{\sqrt{4 \cdot 13}\sqrt{13}} = -\frac{24}{2\sqrt{13}\sqrt{13}} = -\frac{12}{13}\\ \therefore \theta &= cos^{-1}\bigg( -\frac{12}{13}\bigg) \approx 2.74 \text{ radians or 157.4}^{\circ} \end{align}\]
(Remember that \(0 \le \theta \le \pi\))
Definition 1.3.7 | The Angle Between Two Vectors
Do It Yourself 1.3.11 | The Angle Between Two Vectors
Solution DIY 1.3.11 | The Angle Between Two Vectors
Theorem 1.9 | The Angle Between Two Vectors
Let x and y be nonzero vectors in \(\mathbb{R}^n\), and let \(\theta\) be the angle between x and y. Then,
\(\textbf{x}\cdot \textbf{y} > 0\) if and only if \(0 \le \theta < \frac{\pi}{2}\) radians (0\(^{\circ}\) or acute).
\(\textbf{x}\cdot \textbf{y} = 0\) if and only if \(\theta = \frac{\pi}{2}\) radians (90\(^{\circ}\)).
\(\textbf{x}\cdot \textbf{y} < 0\) if and only if \(\frac{\pi}{2} \le \theta < \pi\) radians (180\(^{\circ}\) or obtuse).
Definition 1.3.8 | Special Cases: Orthogonal and Parallel Vectors
Two vectors x and y in \(\mathbb{R}^n\) are orthogonal if and only if \(\textbf{x}\cdot \textbf{y} = 0\).
1.9, two nonzero vectors are orthogonal if and only if they are perpendicular to each other.Example 1.3.12 | Orthogal and Parallel Vectors
Solution 1.3.12 | Orthogonal and Parallel Vectors
\(\textbf{x}\cdot \textbf{y} = (2\cdot -10) + (-4 \cdot -5) = -20 + 20 = 0\).
1.3.8 | Orthogonal and Parallel Vectors
In \(\mathbb{R}^3\), the set of vectors \(\textbf{{i, j, k}}\) is mutually orthogonal; that is, the dot product of any two different vectors from this set equals zero.
In general, in \(\mathbb{R}^n\) the standard unit vectors \(\textbf{e}_1 = [1,0,0,\dots,0]\), \(\textbf{e}_2 = [0,1,0,\dots,0]\), \(\dots \textbf{e}_n = [0,0,0,\dots,1]\) form a mutually orthogonal set of vectors.
Theorem 1.10 | Parallel Vectors
Example 1.3.13 | Orthogal and Parallel Vectors
Solution 1.3.13 | Orthogonal and Parallel Vectors
\[\begin{align} \text{cos } \theta = \frac{\textbf{x} \cdot \textbf{y}}{(||\textbf{x}||)(||\textbf{y}||)} = \frac{48 + 300 + 12}{\sqrt{480} \sqrt{270}} =\frac{360}{\sqrt{129600}} = 1 \end{align}\]
Thus, by Theorem 1.10 \(\textbf{x}\) and \(\textbf{y}\) are parallel.
(Note also that \(\textbf{x}\) and \(\textbf{y}\) are parallel by the definition of parallel vectors because \([8, -20, 4] = \frac{4}{3}[6, -15, 3]\))
Sir Calvin A. Gaye \(\quad \quad \quad \quad \quad \quad\) Elementary Linear Algebra \(\quad \quad \quad \quad \quad\) Semester 1 2024/25